A Novel RPCA Method Using Log-Weighted Nuclear and L_(2,1) Norms Combined with Contrast-Limited Adaptive Histogram Equalization (CLAHE) for High Dimensional Natural and Medical Image Data

Authors

  • Habte Tadesse LIKASSA Department of Biostatistics, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
  • Ding Geng Chen Department of Biostatistics, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA and Department of Statistics, University of Pretoria, South Africa
  • Dayu Sun Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA

DOI:

https://doi.org/10.6000/1929-6029.2024.13.25

Keywords:

RPCA, Low-rank, Computational statistics, Medical Data, CLAHE, LWNN L_2,1 Norm

Abstract

Estimating the true underlying images from distorted high-dimensional data is crucial for applications in high-profile fields such as crime detection in security, clinical settings and medical diagnosis in healthcare, and radar imaging in signal processing. Existing statistical methods often struggle with robustness and image reconstruction quality when processing high-dimensional image data. While Robust Principal Component Analysis (RPCA) is widely used for image recovery, its reliance on uniform weights with singular value decomposition (SVD) weakens performance, especially in noisy environments. The L1 norm also fails to capture image details and recovery under high noise levels, a critical limitation for applications like medical diagnoses, where detail is essential. These challenges emphasize the need for improved methods to handle noise and enhance image quality in sensitive fields. Therefore, this paper proposes a novel RPCA method that integrates CLAHE with Log weighted nuclear norm (LWNN) and the L2,1 norm for high-dimensional natural and medical imaging. To reduce the computational load, our novel method is formulated into a new optimization problem and solved using the Alternating Direction Method of Multipliers (ADMM). This method leverages LWNN for enhanced low-rank approximation to drastically prune out the anomalies in images and the norm for improved sparse component recovery. Our approach has superior performance in image reconstruction compared to other state-of-the-art methods (SOTAs), showing significant advancements with real-world datasets. An interesting finding of this research is that combining the LWNN with the L2,1 norm is highly effective at removing noise from images. Furthermore, when the CLAHE technique is combined with LWNN and the L2,1 norm, it significantly enhances the extraction of previously unseen features, making blood vessels in medical images much clearer and more distinguishable. This combination proves to be a powerful approach for medical image analysis, revealing details that are otherwise difficult to detect. This method will be used for crime detection in security intelligence, and clinical settings and medical diagnosis in human retinal eyes.

References

Ali AM, Mohammed MA. A comprehensive review of artificial intelligence approaches in omics data processing: evaluating progress and challenges. International Journal of Mathematics, Statistics, and Computer Science 2024; 2: 114-167. https://doi.org/10.59543/ijmscs.v2i.8703 DOI: https://doi.org/10.59543/ijmscs.v2i.8703

Candès EJ, Li X, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM (JACM) 2011; 58(3): 1-37. https://doi.org/10.1145/1970392.1970395 DOI: https://doi.org/10.1145/1970392.1970395

Hawe D, Fernández FRH, O’Suilleabháin L, Huang J, Wolsztynski E, O’Sullivan F. Kinetic analysis of dynamic positron emission tomography data using open-source image processing and statistical inference tools. Wiley Interdisciplinary Reviews: Computational Statistics 2012; 4(3): 316-322. https://doi.org/10.1002/wics.1196 DOI: https://doi.org/10.1002/wics.1196

Huang H-H, Yu F, Fan X, Zhang T. A framework of regularized low-rank matrix models for regression and classification. Statistics and Computing 2024; 34(1): 10. https://doi.org/10.1007/s11222-023-10318-z DOI: https://doi.org/10.1007/s11222-023-10318-z

Huang Y, Wang Z, Chen Q, Chen W. Robust principal component analysis via truncated l_{1-2} minimization. In 2023 International Joint Conference on Neural Networks (IJCNN), IEEE 2023; pp. 1-9. https://doi.org/10.1109/IJCNN54540.2023.10191506 DOI: https://doi.org/10.1109/IJCNN54540.2023.10191506

Hu W, Pan T, Kong D, Shen W. Nonparametric matrix response regression with application to brain imaging data analysis. Biometrics 2021; 77(4): 1227-1240. https://doi.org/10.1111/biom.13362 DOI: https://doi.org/10.1111/biom.13362

Ijaz A, Choi J. Anomaly detection of electromyographic signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2018; 26(4): 770-779. https://doi.org/10.1109/TNSRE.2018.2813421 DOI: https://doi.org/10.1109/TNSRE.2018.2813421

He J, Zhang D, Balzano L, Tao T. Iterative Grassmannian optimization for robust image alignment. Image and Vision Computing 2014; 32(10): 800-813. https://doi.org/10.1016/j.imavis.2014.02.015 DOI: https://doi.org/10.1016/j.imavis.2014.02.015

Kheddar H, Hemis M, Himeur Y. Automatic speech recognition using advanced deep learning approaches: A survey. Information Fusion 2024; p. 102422. https://doi.org/10.1016/j.inffus.2024.102422 DOI: https://doi.org/10.1016/j.inffus.2024.102422

Likassa HT, Chen D-G, Chen K, Wang Y, Zhu W. Robust pca with l_(w,*) and l_2,1 norms: A novel method for low-quality retinal image enhancement. Journal of Imaging 2024; 10(7): 151. https://doi.org/10.3390/jimaging10070151 DOI: https://doi.org/10.3390/jimaging10070151

Likassa HT, Fang W-H, Chuang Y-A. Modified robust image alignment by sparse and low rank decomposition for highly linearly correlated data. In 2018 3rd International Conference on Intelligent Green Building and Smart Grid 2018; pp. 1-4. https://doi.org/10.1109/IGBSG.2018.8393549 DOI: https://doi.org/10.1109/IGBSG.2018.8393549

Likassa HT, Fang W-H, Leu J-S. Robust image recovery via affine transformation and l_{2,1} norm. IEEE Access 2019; 7: 125011-125021. https://doi.org/10.1109/ACCESS.2019.2932470 DOI: https://doi.org/10.1109/ACCESS.2019.2932470

Liu J, Rao BD. Robust pca via regularization. IEEE Transactions on Signal Processing 2018; 67(2): 535-549. https://doi.org/10.1109/TSP.2018.2883924 DOI: https://doi.org/10.1109/TSP.2018.2883924

Liu X, Hou J, Wang J. Robust low-rank matrix recovery fusing local-smoothness. IEEE Signal Processing Letters 2022; 29: 2552-2556. https://doi.org/10.1109/LSP.2022.3229555 DOI: https://doi.org/10.1109/LSP.2022.3229555

Liu Y, Zhang Q, Chen Y, Cheng Q, Peng C. Hyperspectral image denoising with log-based robust pca. In 2021 IEEE International Conference on Image Processing 2021; pp. 1634-1638. https://doi.org/10.1109/ICIP42928.2021.9506050 DOI: https://doi.org/10.1109/ICIP42928.2021.9506050

Li X, Xu D, Zhou H, Li L. Tucker tensor regression and neuroimaging analysis. Statistics in Biosciences 2018; 10(3): 520-545. https://doi.org/10.1007/s12561-018-9215-6 DOI: https://doi.org/10.1007/s12561-018-9215-6

Mejia AF, Nebel MB, Eloyan A, Caffo B, Lindquist MA. Pca leverage: outlier detection for high-dimensional functional magnetic resonance imaging data. Biostatistics 2017; 18(3): 521-536. https://doi.org/10.1093/biostatistics/kxw050 DOI: https://doi.org/10.1093/biostatistics/kxw050

Naiman DQ, Priebe CE. Computing scan statistic p values using importance sampling, with applications to genetics and medical image analysis. Journal of Computational and Graphical Statistics 2001; 10(2): 296-328. https://doi.org/10.1198/10618600152628194 DOI: https://doi.org/10.1198/10618600152628194

Peng Y, Ganesh A, Wright J, Xu W, Ma Y. Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence 2012; 34(11): 2233-2246. https://doi.org/10.1109/TPAMI.2011.282 DOI: https://doi.org/10.1109/TPAMI.2011.282

Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 2003; 22(8): 986-1004. https://doi.org/10.1109/TMI.2003.815867 DOI: https://doi.org/10.1109/TMI.2003.815867

Qin B, Mao H, Liu Y, Zhao J, Lv Y, Zhu Y, Ding S, Chen X. Robust pca unrolling network for super-resolution vessel extraction in x-ray coronary angiography. IEEE Transactions on Medical Imaging 2022; 41(11): 3087-3098. https://doi.org/10.1109/TMI.2022.3177626 DOI: https://doi.org/10.1109/TMI.2022.3177626

Qiu Y, Zhou G, Huang Z, Zhao Q, Xie S. Efficient tensor robust pca under hybrid model of tucker and tensor train. IEEE Signal Processing Letters 2022; 29: 627-631. https://doi.org/10.1109/LSP.2022.3143721 DOI: https://doi.org/10.1109/LSP.2022.3143721

Rajpurohit P, Arora A, Babu P. A block minorization-maximization algorithm for row-sparse principal component analysis. IEEE Signal Processing Letters 2024. https://doi.org/10.1109/LSP.2024.3431463 DOI: https://doi.org/10.1109/LSP.2024.3431463

Sajid H, Cheung S-CS. Universal multimode background subtraction. IEEE Transactions on Image Processing 2017; 26(7): 3249-3260. https://doi.org/10.1109/TIP.2017.2695882 DOI: https://doi.org/10.1109/TIP.2017.2695882

Shen Z, Fu H, Shen J, Shao L. Modeling and enhancing low-quality retinal fundus images. IEEE Transactions on Medical Maging 2020; 40(3): 996-1006. https://doi.org/10.1109/TMI.2020.3043495 DOI: https://doi.org/10.1109/TMI.2020.3043495

Song W, Zhu J, Li Y, Chen C. Image alignment by online robust pca via stochastic gradient descent. IEEE Transactions on Circuits and Systems for video Technology 2015; 26(7): 1241-1250. https://doi.org/10.1109/TCSVT.2015.2455711 DOI: https://doi.org/10.1109/TCSVT.2015.2455711

Song Y, Li J, Chen X, Zhang D, Tang Q, Yang K. An efficient tensor completion method via truncated nuclear norm. Journal of Visual Communication and Image Representation 2020; 70: 102791. https://doi.org/10.1016/j.jvcir.2020.102791 DOI: https://doi.org/10.1016/j.jvcir.2020.102791

Verbanck M, Josse J, Husson F. Regularised pca to denoise and visualise data. Statistics and Computing 2015; 25(2): 471-486. https://doi.org/10.1007/s11222-013-9444-y DOI: https://doi.org/10.1007/s11222-013-9444-y

Wu D, Zhang H, Nie F, Wang R, Yang C, Jia X, Li X. Double-attentive principle component analysis. IEEE Signal Processing Letters 2020; 27: 1814-1818. https://doi.org/10.1109/LSP.2020.3027462 DOI: https://doi.org/10.1109/LSP.2020.3027462

Xu Y, Jasra A. A method for high-dimensional smoothing. Journal of the Korean Statistical Society 2019; 48: 50-67. https://doi.org/10.1016/j.jkss.2018.08.004 DOI: https://doi.org/10.1016/j.jkss.2018.08.004

Zhou H, Li L, Zhu H. Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association 2013; 108(502): 540-552. https://doi.org/10.1080/01621459.2013.776499 DOI: https://doi.org/10.1080/01621459.2013.776499

Downloads

Published

2024-11-26

How to Cite

LIKASSA, H. T. ., Chen, D. G. ., & Sun, D. . (2024). A Novel RPCA Method Using Log-Weighted Nuclear and L_(2,1) Norms Combined with Contrast-Limited Adaptive Histogram Equalization (CLAHE) for High Dimensional Natural and Medical Image Data. International Journal of Statistics in Medical Research, 13, 275–290. https://doi.org/10.6000/1929-6029.2024.13.25

Issue

Section

General Articles