Automated Detection of Posterior Tibial Slope on X-Ray Images Using VGG19

Authors

  • Showkat A. Dar Department of Computer Science and Engineering, GITAM University, Bangalore Campus-561203, India
  • Alaa A. ELnazer Department of Marketing, College of Business, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
  • Snehal Rathi Department of Computer Engineering, Vishwakarma Institute of Technology, Pune, India
  • Mohammad Nadeem Khalid EMET Department, Abu Dhabi Polytechnic, Abu Dhabi, UAE
  • Aurchana Department of Computer Science and Engineering, Chennai Institute of Technology, Chennai, India
  • Divya Tirva Department of Chemical Engineering, Marwadi University, Rajkot-360003, India
  • Showkat A. Bhat Symbiosis School of Economics, Symbiosis International (Deemed University), Pune, India
  • Shabaan Ali EMET Department, Abu Dhabi Polytechnic, Abu Dhabi, UAE
  • Aafaq A. Rather Symbiosis Statistical Institute, Symbiosis International (Deemed University), Pune, India

DOI:

https://doi.org/10.6000/1929-6029.2025.14.63

Keywords:

Convolutional Neural Networks (CNNs), Deep learning, Machine learning, VGG-19 architecture, Image analysis, Pattern recognition

Abstract

Elderly and overweight individuals are particularly vulnerable to developing muscle weakness and joint pain as a result of osteoarthritis (OA). This degenerative joint condition often affects the ligaments and primarily damages the cartilage. Healthy cartilage, being smooth and elastic, enables bones to glide effortlessly over one another, providing stability and preventing friction between bone surfaces. When this protective tissue deteriorates partially or completely, it results in painful stiffness and discomfort caused by direct bone contact. The diagnosis of osteoarthritis typically involves a combination of clinical assessment and diagnostic imaging techniques such as X-rays or MRI scans. The present study focuses on utilising advanced image-based feature extraction methods for the identification and classification of knee osteoarthritis. This approach aims to enhance diagnostic accuracy by improving the differentiation of structural changes observed in medical images.

References

Emre F, Bozkurt M. Lateral Tibial Slope Should Be Considered When Planning Medial Unicompartmental Knee Arthroplasty. Journal of Clinical Practice and Research 2023. DOI: https://doi.org/10.14744/cpr.2023.58077

Hassa E, Uyanik SA, Kosehan D, Alic T. CT-based analysis of posterior tibial slope in a Turkish population sample: A retrospective observational study. Research Gate Journal 2023. DOI: https://doi.org/10.1097/MD.0000000000033452

Muthu SS, Shrikrishna U, Ravichandran K. Evaluation of Posterior Tibial Slope for Anterior Cruciate Ligament Tear and Meniscal Tear: A Cross-sectional Study. Journal of Clinical and Diagnostic Research 2023. DOI: https://doi.org/10.7860/JCDR/2023/58727.17268

Tong L, Xue S, Chen X, Fang R. Artificial intelligence-based detection of posterior tibial slope on X-ray images of unicompartmental knee arthroplasty patients. Research gate Journal 2023. DOI: https://doi.org/10.1016/j.jrras.2023.100615

Hiranaka Y, Muratsu H, Tsubosaka M, Matsumoto T, Maruo A, Miya H, Kuroda R, Matsushita T. Influence of posterior tibial slope on sagittal knee alignment with comparing contralateral knees of anterior cruciate ligament injured patients to healthy knees. Research Gate Journal 2022. DOI: https://doi.org/10.21203/rs.3.rs-1473749/v1

Supreeth S, Al Barwani A, Al Manei, K, Al Ghanami, Suwailim S, Saseendar K, Vijay K. Is Posterior Tibial Slope and Mechanism of Failure Crucial for an Anatomically Reconstructed Primary Hamstring Graft Anterior Cruciate Ligament? Journal of Arthroscopy and Joint Surgery 2022. DOI: https://doi.org/10.4103/jajs.jajs_87_22

Meier M-P, Hochrein Y, Saul D, Seitz M-T, Klockner FS, Lehmann W, Hawellek T. Morphological Analysis of the Tibial Slope in 720 Adult Knee Joints. Research Gate Journal 2022. DOI: https://doi.org/10.3390/diagnostics12061346

Cruz CA, Mannino BJ, Pike A, Thoma D, Lindell K, Kerbel YE, Bottoni CR, McCadden A, Lopez AJ. Increased posterior tibial slope is an independent risk actor of anterior cruciate ligament reconstruction graft rupture irrespective of graft choice. Journal of ISAKOS 2022. DOI: https://doi.org/10.1016/j.jisako.2022.04.002

Fares A, Horteur C, Al Ezz MA, Hardy A, Rubens-Duval B, Karam K, Gaulin B, Pailhe R. Posterior tibial slope (PTS) 210 degrees isa risk factor for further anterior cruciate ligament (ACL) injurvy; BMI is not. European Journal of Orthopedic Surgery and Traumatology 2023. DOI: https://doi.org/10.1007/s00590-022-03406-9

Dar SA, MC, Indhumathi R, Sardar TH. Fracture classification system in X-ray images and method employed thereof. Indian Patent IN202441069005A 2024.

Chen Y, Ding J, Dai S, Yang J, Wang M, Tian T, Deng X, Li B, Cheng G, Liu J. Radiographic measurement of the posterior tibial slopein normal Chinese adults: a retrospective cohort study. Research Gate Journal 2022. DOI: https://doi.org/10.1186/s12891-022-05319-4

Korthaus A, Krause M, Pagenstert G, Warncke M, Brembach F, Karl-Heinz F, Kolb JP. Tibial slope in the posterolateral quadrant with and without ACL injury. PubMed Journal 2021. DOI: https://doi.org/10.1007/s00402-021-04298-w

Faschingbauer M. Posterior Tibial Slope: The “Unknown Size” of the Knee Joint. Anthroscopy Journal 2021; 2020: 10.024.

Matas BM, Barberà IC, Marsico S, Claramunt AA, Torres-Claramunt R, López AS. Importance of Posterior Tibial Slope, Medial Tibial Plateau Slope and Lateral Tibial Plateau Slope in Anterior Cruciate Ligament Injury. Scientific Research Publishing Journal 2021.

Alsowaigh M, Arafah MA, Alharbi SK, AlSultan O, Alshahrani A, Al Hulaibi FH, Bin Nasser A. Posterior tibial slope measurement among Saudi population. Medcrave Online Journal 2021. DOI: https://doi.org/10.15406/mojor.2021.13.00549

Hecker A, Lerch TD, Egli RJ, Liechti EF, Klenke FM. The EOS 3D imaging system reliably measures posterior tibial slope. Journal of Orthopaedic and Research 2021. DOI: https://doi.org/10.1186/s13018-021-02529-9

Kacmaz IE, Topkaya Y, Basa CD, Zhamilov V, Er A, Reisoglu A, Ekizoglu O. Posterior tibial slope of the knee measured on X-rays in a Turkish population. Research Gate Journal 2020. DOI: https://doi.org/10.1007/s00276-020-02430-w

Jahn R, Cooper JD, Juhan T, Kang HP, Bolia IK, Gamradt SC, Hatch GF, Weber AE. Reliability of Plain Radiographs Versus Magnetic Resonance Imaging to Measure Tibial Slope in Sports Medicine Patients: Can They Be Used Interchangeably? Sage Journals 2021. DOI: https://doi.org/10.1177/23259671211033882

Veizi E, Fırat A, Tecimel O, Epni Ş, Subaşı İÖ, Kılıçarslan K. The Change in Posterior Tibial Slope After Cementless Unicondylar Knee Arthroplasty. PubMed Journal 2020; 2020.12.041

Kunal K, Kumar R. Radiographic evaluation of posterior tibial slope in ACL deficient Indian patients. Research Gate Journal 2020; 10.18203

Dar SA, et al. Improving Alzheimer’s Disease Detection with Transfer Learning. Int J Stat Med Res 2025; 14: 403-415. DOI: https://doi.org/10.6000/1929-6029.2025.14.39

Dar SA, Palanivel S, Geetha MK, Balasubramanian M. Mouth Image Based Person Authentication Using DWLSTM and GRU. Inf Sci Lett 2022; 11(3): 853-862. DOI: https://doi.org/10.18576/isl/110317

Dar SA, Palanivel S. Performance Evaluation of Convolutional Neural Networks (CNNs) And VGG on Real-Time Face Recognition System. Adv Sci Technol Eng Syst J 2021; 6(2): 956-964. DOI: https://doi.org/10.25046/aj0602109

Dar SA, Palanivel S. Real Time Face Authentication System Using Stacked Deep Auto Encoder for Facial Reconstruction. Int J Thin Film Sci Technol 2022; 11(1): 73-82. DOI: https://doi.org/10.18576/ijtfst/110109

Dar SA, PS. Real-Time Face Authentication Using Denoised Autoencoder (DAE) for Mobile Devices 2022; 21(6): 163-176. DOI: https://doi.org/10.4018/978-1-7998-9795-8.ch011

Ayadi W, et al. AI-Powered CNN Model for Automated Lung Cancer Diagnosis in Medical Imaging. Int J Stat Med Res 2025; 14: 616-625. DOI: https://doi.org/10.6000/1929-6029.2025.14.58

Ibrahim H, Mahmoud M, Ahmad M, Mandouh R. Different Approaches for Outlier Detection in Life Testing Scenarios. Computational Journal of Mathematical and Statistical Sciences 2024; 3(1): 203-227. DOI: https://doi.org/10.21608/cjmss.2024.254148.1033

Onyekwere C, Nwankwo C, Obulezi O, Ezeilo C. The feature-value paradox: Unsupervised discovery of strategic archetypes in the smartphone market using machine learning. Journal of Artificial Intelligence in Engineering Practice 2025; 2(2): 65-72. DOI: https://doi.org/10.21608/jaiep.2025.420689.1024

Raihen MN, Hossain MI, Chellamuthu V. Predicting clinical outcomes in liver cirrhosis using machine learning and data balancing technique. Computational Journal of Mathematical and Statistical Sciences 2025; 4(2): 664-696. DOI: https://doi.org/10.21608/cjmss.2025.397747.1213

Shalaby Y, Embark A. A predictive model for climate change using advanced machine learning algorithms in Egypt. Journal of Artificial Intelligence in Engineering Practice 2025; 2(2): 1-21. DOI: https://doi.org/10.21608/jaiep.2025.415474.1020

Nnaekwe K, Ani E, Obieke V, Okechukwu C, Usman A, Othman M. Forecasting seasonal rainfall with time series, machine learning and deep learning. Innovation in Computer and Data Sciences 2025; 1(1): 51-65. DOI: https://doi.org/10.64389/icds.2025.01127

Almetwally EM, Elbatal I, Elgarhy M, Kamel AR. Implications of machine learning techniques for prediction of motor health disorders in Saudi Arabia. Alexandria Engineering Journal 2025; 27: 1193-1208. DOI: https://doi.org/10.1016/j.aej.2025.07.015

Downloads

Published

2025-11-21

How to Cite

Dar, S. A. ., ELnazer, A. A. ., Rathi, S. ., Khalid, M. N. ., Aurchana, Tirva, D. ., Bhat, S. A. ., Ali, S. ., & Rather, A. A. . (2025). Automated Detection of Posterior Tibial Slope on X-Ray Images Using VGG19. International Journal of Statistics in Medical Research, 14, 676–687. https://doi.org/10.6000/1929-6029.2025.14.63

Issue

Section

General Articles

Most read articles by the same author(s)