Bilal-G Family of Distributions with Applications to Biomedical and Reliability Engineering Data

Authors

  • Joy I. Udobi Department of Statistics, School of Applied Sciences, Federal Polytechnic, Oko, Nigeria
  • Happiness O. Obiora-Ilouno Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, P.O. Box 5025 Awka, Nigeria
  • Okechukwu J. Obulezi Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, P.O. Box 5025 Awka, Nigeria
  • Doaa M.H. Ahmed Department of Insurance and Risk Management, College of Business, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
  • Ehab M. Almetwally Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
  • Mohammed Elgarhy Department of Basic Sciences, Higher Institute of Administrative Sciences, Belbeis, AlSharkia, Egypt and Department of Computer Engineering, Biruni University, 34010, Istanbul, Turkey

DOI:

https://doi.org/10.6000/1929-6029.2025.14.65

Keywords:

Bilal distribution, Bilal-G family of distributions, estimation, biomedical studies, engineering reliability data

Abstract

This paper introduces the Bilal-G (B-G) family of distributions, a novel generator-based method for enhancing the flexibility of existing probability models to better accommodate complex data structures prevalent in biomedical and reliability engineering. Data from these fields frequently exhibit features like high skewness, significant outliers, and non-monotone hazard rates that challenge conventional distributions. Using the Bilal distribution as the generator, we construct the new family’s general cumulative distribution function (CDF) and probability density function (PDF), from which a key, parsimonious sub-model, the two-parameter Bilal-Exponential (BE) distribution, is derived. We thoroughly analyze the BE distribution’s properties, including its capability to model an increasing hazard rate, which is supported by Total Time on Test (TTT) plots of the application datasets. A comprehensive simulation study evaluates the performance of fifteen distinct non-Bayesian estimators, revealing that the Minimum Spacing Linex Distance (MSLNDE) method consistently provides the most accurate and precise parameter estimates across various sample sizes. Finally, the superiority of the BE distribution is demonstrated through its successful application to two real datasets: one on patient mortality rates and one on component failure times. For the mortality data (Data I), the BE model reduced the Akaike Information Criterion (AIC) by 1.99 units compared to the classical Weibull distribution. For the component failure data (Data II), the Bayesian Information Criterion (BIC) was reduced by 0.41 units compared to the best-fitting competing model (TIHTE), confirming the BE distribution’s exceptional goodness-of-fit and reliability as a practical lifetime model.

References

Johnson NL. Systems of frequency curves generated by methods of translation. In: Biometrika 1949; 36(1/2): 149-176. DOI: https://doi.org/10.1093/biomet/36.1-2.149

Singh SK, Maddala GS. A function for the size distribution of expenditure. In: Econometrica 1976; 44: 963-970. DOI: https://doi.org/10.2307/1911538

Mudholkar GS, Srivastava DK. Exponentiated Weibull family for analyzing bathtub failure-rate data. In: IEEE Transactions on Reliability 1993; 42(2): 299-302. DOI: https://doi.org/10.1109/24.229504

Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. In: Biometrika 1997; 84(3): 641-652. DOI: https://doi.org/10.1093/biomet/84.3.641

Eugene N, Lee C, Famoye F. Beta-normal distribution and its applications. In: Communications in Statistics-Theory and Methods 2002; 31(4): 497-512. DOI: https://doi.org/10.1081/STA-120003130

Cordeiro GM, Castro MD. A new family of generalized distributions. In: Journal of Statistical Computation and Simulation 2011; 81(7): 883-898. DOI: https://doi.org/10.1080/00949650903530745

Alzaatreh A, Lee C, Famoye F. A new method for generating families of continuous distributions. In: Metron 2013; 71(1): 63-79. DOI: https://doi.org/10.1007/s40300-013-0007-y

Weibull W. A statistical distribution function of wide applicability. In: Journal of applied mechanics 1951. url: https://hal.science/hal-03112318/ document. DOI: https://doi.org/10.1115/1.4010337

Lomax KS. Business failures: Another example of the analysis of failure data. In: Journal of the American Statistical Association 1954; 49(268): 847-852. DOI: https://doi.org/10.1080/01621459.1954.10501239

Lindley DV. Fiducial distributions and Bayes’ theorem. In: Journal of the Royal Statistical Society. Series B (Methodological) 1958; 102-107. url: https://www.jstor.org/stable/2983909. DOI: https://doi.org/10.1111/j.2517-6161.1958.tb00278.x

Obulezi OJ, Oguadimma EE, Igbokwe CP, Chikwelu CU, Salem GS. A New Unit Family of Distributions with Applications to Public Health, Environmental, and Financial Data. In: Appl Math 2025; 19(6): 1437-1461. DOI: https://doi.org/10.18576/amis/190617

Obulezi OJ, Obiora-Ilounoa HO, Osujia GA, Kayidb M, Balogunc OS. Weibull Sine Generalized Distribution Family: Fundamental Properties, Sub-model, Simulations, with Biomedical Applications. In: Electronic Journal of Applied Statistical Analysis 2025; 18(01): 183-212.

Obisue EI, Okoro CN, Obulezi OJ, Abdalla GSS, Almetwally EM, Faal A, Elgarhy M. Kavya-Manoharan DUS Family of Distributions with Diverse Applications. In: Journal of Statistics Applications & Probability 2025; 14(6). DOI: https://doi.org/10.18576/jsap/140608

Mir AA, Ur Rasool S, Ahmad SP, Bhat AA, Jawa TM, Sayed-Ahmed N, Tolba AH. A robust framework for probability distribution generation: Analyzing structural properties and applications in engineering and medicine. In: Axioms 2025; 14(4): 281. DOI: https://doi.org/10.3390/axioms14040281

Orji GO, Etaga HO, Almetwally EM, Igbokwe CP, Aguwa OC, Obulezi OJ. A new odd reparameterized exponential transformed-x family of distributions with applications to public health data. In: Innovation in Statistics and Probability 2025; 1(1): 88-118.

El-Saeed AR, Obulezi OJ, El-Raouf MMA. Type II heavy tailed family with applications to engineering, radiation biology and aviation data. In: Journal of Radiation Research and Applied Sciences 2025; 18(3): 101547. DOI: https://doi.org/10.1016/j.jrras.2025.101547

Elgarhy M, Abdalla GSS, Obulezi OJ, Almetwally EM. A tangent DUS family of distributions with applications to the Weibull model. In: Scientific African 2025; e02843. DOI: https://doi.org/10.1016/j.sciaf.2025.e02843

Oramulu DO, Alsadat N, Kumar A, Bahloul MM, Obulezi OJ. Sine generalized family of distributions: Properties, estimation, simulations and applications. In: Alexandria Engineering Journal 2024; 109: 532-552. DOI: https://doi.org/10.1016/j.aej.2024.09.001

Mohammad S, Gaire AK. Exponential Arctan-G Family of Distribution With Properties and Applications. In: Journal of Probability and Statistics 2025; 2025(1): 3643496. DOI: https://doi.org/10.1155/jpas/3643496

https://doi.org/10.1155/jpas/ 3643496

Kumar A, Yadav AS. A new class of ArcSin Topp- Leone probability distribution: classical estimation and its application to real data. In: Life Cycle Reliability and Safety Engineering 2025; 1-20. DOI: https://doi.org/10.1007/s41872-025-00349-y

Alkhairy I, Nagy M, Muse AH, Hussam E. The Arctan-X Family of Distributions: Properties, Simulation, and Applications to Actuarial Sciences. In: Complexity 2021; 2021(1): 4689010. DOI: https://doi.org/10.1155/2021/4689010

Christophe CC. Theory on a new bivariate trigonometric Gaussian distribution. In: Innovation in Statistics and Probability 2025; 1(2): 1-17. DOI: https://doi.org/10.64389/isp.2025.01223

Mousa MN, Moshref ME, Youns N, Mansour MMM. Inference under Hybrid Censoring for the Quadratic Hazard Rate Model: Simulation and Applications to COVID-19 Mortality. In: Modern Journal of Statistics 2025; 2(1): 1-31. DOI: https://doi.org/10.64389/mjs.2026.02113

Ragab I, Elgarhy M. Type II half logistic Ailamujia distribution with numerical illustrations to medical data. In: Computational Journal of Mathematical and Statistical Sciences 2025; 4(2): 379-406. DOI: https://doi.org/10.21608/cjmss.2025.346849.1095

Orji GO, Etaga HO, Almetwally EM, Igbokwe CP, Aguwa OC, Obulezi OJ. A New Odd Reparameterized Exponential Transformed-X Family of Distributions with Applications to Public Health Data. In: Innovation in Statistics and Probability 2025; 1(1): 88-118. DOI: https://doi.org/10.64389/isp.2025.01107

Gemeay AM, Moakofi T, Balogun OS, Ozkan E, Md. Hossain M. Analyzing Real Data by a New Heavy-Tailed Statistical Model. In: Modern Journal of Statistics 2025; 1(1): 1-24. DOI: https://doi.org/10.64389/mjs.2025.01108

Hassan A, Metwally DS, Elgarhy M, Gemeay AM. A new probability continuous distribution with different estimation methods and application. In: Computational Journal of Mathematical and Statistical Sciences 2025; 4(2): 512-532. DOI: https://doi.org/10.21608/cjmss.2025.375970.1157

Abd-Elrahman AM. Utilizing ordered statistics in lifetime distributions production: a new lifetime distribution and applications. In: Journal of probability and statistical science 2013; 11(2): 153-164.

Fisher RA. On an absolute criterion for fitting frequency curves. In: Messenger of Mathematics 1912; 41: 155-156.

Fisher RA. On the mathematical foundations of theoretical statistics. In: Philosophical transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 1922; 222(594-604): 309-368. DOI: https://doi.org/10.1098/rsta.1922.0009

Anderson TW, Darling DA. Asymptotic theory of certain” goodness of fit” criteria based on stochastic processes. In: The Annals of Mathematical Statistics 1952; 193-212. url: https://www.jstor.org/stable/2236446 DOI: https://doi.org/10.1214/aoms/1177729437

Anderson TW, Darling DA. A test of goodness of fit. In: Journal of the American Statistical Association 1954; 49(268) 765-769. DOI: https://doi.org/10.1080/01621459.1954.10501232

Choi K, Bulgren WG. An estimation procedure for mixtures of distributions. In: Journal of the Royal Statistical Society: Series B (Methodological) 1968; 30(3): 444-460. DOI: https://doi.org/10.1111/j.2517-6161.1968.tb00743.x

Swain JJ, Venkatraman S, Wilson JR. Least-squares estimation of distribution functions in Johnson’s translation system. In: Journal of Statistical Computation and Simulation 1988; 29(4): 271-297. DOI: https://doi.org/10.1080/00949658808811068

Mukhtar MS, El-Morshedy M, Eliwa MS, Yousof HM. Expanded FrÅLechet model: mathematical properties, copula, different estimation methods, applications and validation testing. In: Mathematics 2020; 8(11): 1949. DOI: https://doi.org/10.3390/math8111949

Aguilar GAS, Moala FA, Cordeiro GM. Zero-truncated poisson exponentiated gamma distribution: Application and estimation methods. In: Journal of Statistical Theory and Practice 2019; 13: 1-20. DOI: https://doi.org/10.1007/s42519-019-0059-2

Kao JHK. Computer methods for estimating Weibull parameters in reliability studies. In: IRE Transactions on Reliability and Quality Control 1958; 15-22. DOI: https://doi.org/10.1109/IRE-PGRQC.1958.5007164

Torabi H. A general method for estimating and hypotheses testing using spacings. In: Journal of Statistical Theory and Applications 2008; 8(2): 163-168.

Ahmad Z, Almaspoor Z, Khan F, El-Morshedy M. On predictive modeling using a new flexible Weibull distribution and machine learning approach: Analyzing the COVID-19 data. In: Mathematics 2022; 10(11): 1792. DOI: https://doi.org/10.3390/math10111792

Prabhakar Murthy DN. Min Xie, and Renyan Jiang. Weibull models. John Wiley & Sons, 2004. DOI: https://doi.org/10.1002/047147326X

Al-Omari AI, Dobbah SA. On the mixture of Shanker and gamma distributions with applications to engineering data. In: Journal of Radiation Research and Applied Sciences 2023; 16(1): 100533. DOI: https://doi.org/10.1016/j.jrras.2023.100533

Obulezi OJ, Obiora-Ilouno HO, Osuji GA, Kayid M, Balogun OS. A new family of generalized distributions based on logistic-x transformation: sub-model, properties and useful applications. In: Research in Statistics 2025; 3(1): 2477232. DOI: https://doi.org/10.1080/27684520.2025.2477232

Aforka KF, Semary HE, Onyeagu SI, Etaga HO, Obulezi OJ, Al-Moisheer AS. A New Exponentiated Power Distribution for Modeling Censored Data with Applications to Clinical and Reliability Studies. In: Symmetry 2025; 17(7): 1153. DOI: https://doi.org/10.3390/sym17071153

Weibull W. A statistical theory of strength of materials. In: IVB-Handl 1939. url: https://cir.nii.ac.jp/all?q=IVB-Handl.

Gumbel EJ. Statistics of Extremes. Columbia University Press 1958. DOI: https://doi.org/10.7312/gumb92958

Nwankwo BC, Obiora-Ilouno HO, Almulhim FA, Mustafa MSA, Obulezi OJ. Group acceptance sampling plans for type-I heavy-tailed exponential distribution based on truncated life tests. In: AIP Advances 2024; 14(3): DOI: https://doi.org/10.1063/5.0194258

Downloads

Published

2025-11-24

How to Cite

Udobi, J. I. ., Obiora-Ilouno, H. O. ., Obulezi, O. J. ., Ahmed, D. M. ., Almetwally, E. M. ., & Elgarhy, M. . (2025). Bilal-G Family of Distributions with Applications to Biomedical and Reliability Engineering Data. International Journal of Statistics in Medical Research, 14, 697–733. https://doi.org/10.6000/1929-6029.2025.14.65

Issue

Section

General Articles

Most read articles by the same author(s)