A New Family of Generalized Distributions, with Applications and Benchmarking against Machine Learning Models

Authors

  • Bassant Elkalzah Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia and Department of Statistics, Mathematics and Insurance, Faculty of Business, Alexandria University, Alexandria, 21526, Egypt
  • Emmanuel E. Oguadimma Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
  • Victory C. Obieke Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
  • Chinonso Michael Eze Department of Statistics, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
  • Okechukwu J. Obulezi Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, P.O. Box 5025 Awka, Nigeria
  • Mohammed Elgarhy Faculty of Computers and Information Systems, Egyptian Chinese University, Nasr City, Egypt; Department of Basic Sciences, Higher Institute of Administrative Sciences, Belbeis, AlSharkia, Egypt and Department of Computer Engineering, Biruni University, 34010, Istanbul, Turkey

DOI:

https://doi.org/10.6000/1929-6029.2025.14.80

Keywords:

Generalized distributions, Lomax tangent generalized family, Monte Carlo Simulation, Log-Gaussian Mixture Model, Masked Autoregressive Flow

Abstract

In this study, we introduce a new family of generalized distributions using the Lomax tangent generalized transformation. We derive the general formulas for its cumulative distribution function (CDF) and probability density function (PDF). As a specific sub-model, we construct the new generalized Lomax tangent transformed exponential (NGLTGE) distribution by using the exponential distribution as the baseline. We investigate the model’s key mathematical properties and conduct a Monte Carlo simulation, which confirms that the estimators exhibit good asymptotic behavior. A group acceptance sampling plan is also designed to demonstrate its utility in quality control. The NGLTGE model is then applied to real-world datasets from cryptocurrency, COVID-19, and breast cancer, where it consistently provides a superior statistical fit compared to related distributions. Finally, we apply the NGLTGE distribution within a machine learning framework using a PyTorch maximum likelihood estimation. The model’s predictive performance is found to be competitive with, and in some cases superior to, state-of-the-art machine learning density estimators like the Log-Gaussian Mixture Model (Log-GMM) and Masked Autoregressive Flow (MAF), especially for data with heavy tails. This work positions the NGLTGE distribution as a valuable, interpretable, and scalable model for both classic statistical and modern data science applications.

References

Muino JM, Voit EO, Sorribas A. GS-distributions: A new family of distributions for continuous unimodal variables. In: Computational statistics & data analysis 2006; 50(10): 2769-2798. DOI: https://doi.org/10.1016/j.csda.2005.04.016

Cordeiro GM, De Castro M. A new family of generalized distributions. In: Journal of statistical computation and simulation 2011; 81(7): 883-898. DOI: https://doi.org/10.1080/00949650903530745

Mehboob ZS, Sobhi MMA, El-Morshedy M, Afify AZ. A new generalized family of distributions: Properties and applications. In: Aims Math 2021; 6(1): 456-476. DOI: https://doi.org/10.3934/math.2021028

Benchiha SA, Sapkota LP, Al Mutairi A, Kumar V, Khashab RH, Gemeay AM, Elgarhy M, Nassr SG. A new sine family of generalized distributions: Statistical inference with applications. In: Mathematical and Computational Applications 2023; 28(4): 83. DOI: https://doi.org/10.3390/mca28040083

El-Alosey AR, Alotaibi MS, Gemeay AM. A new two-parameter mixture family of generalized distributions: Statistical properties and application. In: Heliyon 2024; 10(19): DOI: https://doi.org/10.1016/j.heliyon.2024.e38198

Ahmed MA, Mahmoud MR, ElSherbini EA. The new Kumaraswamy Kumaraswamy family of generalized distributions with application. In: Pakistan Journal of Statistics and Operation Research 2015; 159-180. DOI: https://doi.org/10.18187/pjsor.v11i2.969

Tahir MH, Adnan Hussain M, Cordeiro GM. A new flexible generalized family for constructing many families of distributions. In: Journal of Applied Statistics 2022; 49(7): 1615-1635. DOI: https://doi.org/10.1080/02664763.2021.1874891

Cordeiro GM, Ortega EMM, Ramires TG. A new generalized Weibull family of distributions: mathematical properties and applications. In: Journal of Statistical Distributions and Applications 2015; 2(1): 13. DOI: https://doi.org/10.1186/s40488-015-0036-6

Bakouch H, Chesneau C, Enany M. A weighted general family of distributions: Theory and practice. In: Computational and Mathematical Methods 2021 3 (6): e1135. DOI: https://doi.org/10.1002/cmm4.1135

Alzaatreh A, Lee C, Famoye F. T-normal family of distributions: a new approach to generalize the normal distribution. In: Journal of Statistical Distributions and Applications 2014; 1(1): 16. DOI: https://doi.org/10.1186/2195-5832-1-16

Nofal ZM, Afify AZ, Yousof HM, Cordeiro GM. The generalized transmuted-G family of distributions. In: Communications in Statistics-Theory and Methods 2017; 46(8): 4119-4136. DOI: https://doi.org/10.1080/03610926.2015.1078478

Salahuddin N, Khalil A, Mashwani WK, Shah H, Jomsri P, Panityakul T. A novel generalized family of distributions for engineering and life sciences data applications. In: Mathematical Problems in Engineering 2021; 2021(1): 9949999. DOI: https://doi.org/10.1155/2021/9949999

Gemeay AM, Moakofi T, Balogun OS, Ozkan E, Md Moyazzem H. Analyzing real data by a new heavy-tailed statistical model. In: Modern Journal of Statistics 2025; 1(1): 1-24. DOI: https://doi.org/10.64389/mjs.2025.01108

Mousa MN, Moshref ME, Youns N, Mansour MMM. Inference under hybrid censoring for the quadratic hazard rate model: Simulation and applications to COVID-19 mortality. In: Modern Journal of Statistics 2026; 2(1): 1-31. DOI: https://doi.org/10.64389/mjs.2026.02113

Obulezi OJ. Obulezi distribution: a novel one-parameter distribution for lifetime data modeling. In: Modern Journal of Statistics 2026; 2(1): 32-74. DOI: https://doi.org/10.64389/mjs.2026.02140

Onyekwere CK, Aguwa OC, Obulezi OJ. An updated lindley distribution: Properties, estimation, acceptance sampling, actuarial risk assessment and applications. In: Innovation in Statistics and Probability 2025; 1(1): 1-27. DOI: https://doi.org/10.64389/isp.2025.01103

El Gazar AM, Ramadan DA, ElGarhy M, El-Desouky BS. Estimation of parameters for inverse power Ailamujia and truncated inverse power Ailamujia distributions based on progressive type-II censoring scheme. In: Innovation in Statistics and Probability 2025; 1(1): 76-87. DOI: https://doi.org/10.64389/isp.2025.01106

Hassan AS, Metwally DS, Semary HE, Benchiha SA, Gemeay AM, Elgarhy M. Improved estimation based on ranked set sampling for the Chris-Jerry distribution with application to engineering data. In: Computational Journal of Mathematical and Statistical Sciences 2025. DOI: https://doi.org/10.21608/cjmss.2025.375962.1156

Hassan AS, Metwally DS, Elgarhy M, Gemeay AM. A new probability continuous distribution with different estimation methods and application. In: Computational Journal of Mathematical and Statistical Sciences 2025; 4(2): 512-532. DOI: https://doi.org/10.21608/cjmss.2025.375970.1157

Bousseba FZ, Zeghdoudi H, Sapkota LP, Tashkandy YA, Bakr ME, Kumar A, Gemeay AM. Novel two-parameter quadratic exponential distribution: Properties, simulation, and applications. In: Heliyon 2024; 10(19): DOI: https://doi.org/10.1016/j.heliyon.2024.e38201

Alsadat N, Tanis C, Sapkota LP, Kumar A, Marzouk W, Gemeay AM. Inverse unit exponential probability distribution: Classical and Bayesian inference with applications. In: AIP Advances 2024; 14(5): DOI: https://doi.org/10.1063/5.0210828

M Nassar, A Alzaatreh, O Abo-Kasem, M Mead, and M Mansoor. “A new family of generalized distributions based on alpha power transformation with application to cancer data”. In: Annals of Data Science 5.3 (2018: 421-436. DOI: https://doi.org/10.1007/s40745-018-0144-5

Obulezi OJ, Obiora-Ilouno HO, Osuji GA, Kayid M, Balogun OS. A new family of generalized distributions based on logistic-x transformation: sub-model, properties and useful applications. In: Research in Statistics 2025; 3(1): 2477232. DOI: https://doi.org/10.1080/27684520.2025.2477232

Zaidi SM, Mahmood Z, Nicod`eme MA, Tashkandy YA, Bakr ME, Almetwally EM, Hussam E, Gemeay AM, Kumar A. Lomax tangent generalized family of distributions: Characteristics, simulations, and applications on hydrological-strength data. In: Heliyon 2024; 10(12). DOI: https://doi.org/10.1016/j.heliyon.2024.e32011

Gurler U. Reverse Hazard. Bilkent University, Ankara, Turkey 2016.

Al-Mutairi DK, Ghitany ME, Kundu D. Inferences on stress-strength reliability from Lindley distributions. In: Communications in statistics-theory and methods 2013; 42(8): 1443-1463. DOI: https://doi.org/10.1080/03610926.2011.563011

Kotb MS, Raqab MZ. Inferential analysis of the stress-strength reliability for a new extended family of distributions. In: Research in Statistics 2025; 3(1): 2452926. DOI: https://doi.org/10.1080/27684520.2025.2452926

Asgharzadeh A, Valiollahi R, Raqab MZ. Estimation of the stress-strength reliability for the generalized logistic distribution. In: Statistical Methodology 2013; 15: 73-94. DOI: https://doi.org/10.1016/j.stamet.2013.05.002

Eryilmaz S. On Stress-Strength Reliability with a Time-Dependent Strength. In: Journal of Quality and Reliability Engineering 2013; 2013(1): 417818. DOI: https://doi.org/10.1155/2013/417818

Mokhlis NA, Ibrahim EJ, Gharieb DM. Stress- strength reliability with general form distributions. In: Communications in Statistics-Theory and Methods 2017; 46(3): 1230-1246. DOI: https://doi.org/10.1080/03610926.2015.1014110

Cheng R, Amin N. Maximum product of spacings estimation with application to the lognormal distribution (Mathematical Report 79-1). In: Cardiff: University of Wales IST 1979.

Swain JJ, Venkatraman S, Wilson JR. Least-squares estimation of distribution functions in Johnson’s translation system. In: Journal of Statistical Compu- tation and Simulation 1988; 29(4): 271-297. DOI: https://doi.org/10.1080/00949658808811068

Nwankwo BC, Obiora-Ilouno HO, Almulhim FA, Mustafa MSA, Obulezi OJ. Group acceptance sampling plans for type-I heavytailed exponential distribution based on truncated life tests. In: AIP Advances 2024; 14(3). DOI: https://doi.org/10.1063/5.0194258

Nwankwo MP, Alsadat N, Kumar A, Bahloul MM, and Obulezi OJ. Group acceptance sampling plan based on truncated life tests for Type-I heavy-tailed Rayleigh distribution. In: Heliyon 2024; 10(19). DOI: https://doi.org/10.1016/j.heliyon.2024.e38150

Ekemezie D-FN, Alghamdi FM, Aljohani HM, Riad FH, Abd El-Raouf MM, Obulezi OJ. A more flexible Lomax distribution: characterization, estimation, group acceptance sampling plan and applications. In: Alexandria Engineering Journal 2024; 109: 520-531. DOI: https://doi.org/10.1016/j.aej.2024.09.005

Nadir S, Aslam M, Anyiam KE, Alshawarbeh E, Obulezi OJ. Group acceptance sampling plan based on truncated life tests for the Kumaraswamy Bell-Rayleigh distribution. In: Scientific African 2025; 27: e02537. DOI: https://doi.org/10.1016/j.sciaf.2025.e02537

Lawless JF. Statistical models and methods for lifetime data. John Wiley & Sons 2011.

McLachlan G, Peel D. Finite Mixture Models. Wiley 2000. DOI: https://doi.org/10.1002/0471721182

Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014; arXiv: 1312. 6114 [stat.ML].

Papamakarios G, Pavlakou T, Murray I. Masked Autoregressive Flow for Density Estimation. In: Advances in Neural Information Processing Systems 2017.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural Information Processing Systems 2019.

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations 2015. arXiv: 1412.6980.

Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions. In: Journal of the Royal Statistical Society. Series B 1974. DOI: https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

Freedman D, Diaconis P. On the Histogram as a Density Estimator: L2 Theory. In: Zeitschrift fÅNur Wahrscheinlichkeitstheorie und Verwandte Gebiete 1981. DOI: https://doi.org/10.1007/BF01025868

Silverman BW. Density Estimation for Statistics and Data Analysis. Chapman & Hall 1986.

Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data via the EM Algorithm. In: Journal of the Royal Statistical Society. Series B 1977.

Rosenblatt M. Remarks on Some Nonparametric Estimates of a Density Function. In: The Annals of Mathematical Statistics 1956. DOI: https://doi.org/10.1214/aoms/1177728190

Parzen E. On Estimation of a Probability Density Function and Mode. In: The Annals of Mathematical Statistics 1962. DOI: https://doi.org/10.1214/aoms/1177704472

Okechukwu CP, Asogwa EC, Aguwa OC, Obulezi OJ, Ezzeldin MR. Prediction of gender power dynamics and political representation in Nigeria using machine learning models. In: Innovation in Computer and Data Sciences 2025; 1(1): 1-18. DOI: https://doi.org/10.64389/icds.2025.01122

Onyekwere CK, Nwankwo CK, Abonongo J, Asogwa EC, Shafiq A. Economic growth dynamics: a machine learning-augmented nonlinear autoregressive distributed lag model of asymmetric effect. In: Innovation in Computer and Data Sciences 2025; 1(1): 19-31. DOI: https://doi.org/10.64389/icds.2025.01125

Asogwa EC, Nwankwo MP, Oguadimma EE, Okechukwu CP, Suleiman AA. Hybrid LSTM-CNN deep learning framework for stock price prediction with google stock and reddit sentiment data. In: Innovation in Computer and Data Sciences 2025; 1(1): 32-50. DOI: https://doi.org/10.64389/icds.2025.01126

Nnaekwe K, Ani E, Obieke V, Okechukwu C, Usman A, Othman M. Forecasting seasonal rainfall with time series, machine learning and deep learning. In: Innovation in Computer and Data Sciences 2025; 1(1): 51-65. DOI: https://doi.org/10.64389/icds.2025.01127

Ugbor G, Jamal F, Khan S, Shawki AW. Generative AI for drug discovery: Accelerating molecular design with deep learning using Nigerian local content. In: Innovation in Computer and Data Sciences 2025; 1(1): 66-77. DOI: https://doi.org/10.64389/icds.2025.01128

Onyekwere CK, Nwankwo CK, Apameh DG. A hybrid machine learning framework for multi-objective performance optimization and anomaly detection in maritime operations. In: Innovation in Computer and Data Sciences 2026; 2(1): 1-10. DOI: https://doi.org/10.64389/icds.2026.02131

Downloads

Published

2025-12-30

How to Cite

Elkalzah, B. ., Oguadimma, E. E. ., Obieke, V. C. ., Eze, C. M. ., Obulezi, O. J. ., & Elgarhy, M. . (2025). A New Family of Generalized Distributions, with Applications and Benchmarking against Machine Learning Models . International Journal of Statistics in Medical Research, 14, 886–919. https://doi.org/10.6000/1929-6029.2025.14.80

Issue

Section

General Articles

Most read articles by the same author(s)