Asymmetry of the Developing Brain, Structural Anomalies, and Genetic Variants in the Pathogenesis of Unilateral Spastic Cerebral Palsy (uCP), a Common Neurological Symptom in Intellectual Disability, is Discussed in the form of a Narrative Overview

Authors

  • Peter Martin Séguin-Clinic, Diakonie Kork, Germany

DOI:

https://doi.org/10.6000/2292-2598.2025.13.03.1

Keywords:

Brain development, brain asymmetry, gene variants, neurodevelopmental disorders, cerebral palsy, unilateral cerebral palsy

Abstract

Asymmetrical form and structural features of the brain can occur both as physiological hemispheric differences and as pathological left-right disparities. This review starts with findings on physiological brain development. It focuses primarily on non-physiological asymmetries between the left and right brain hemispheres and their impact on brain function, particularly motor functions. These are discussed in the context of cerebral palsy, specifically unilateral cerebral palsy, with a particular emphasis on genetic aspects. Pathogenic variants in specific genes can have diverse effects on structural brain development and, consequently, brain function. Several groups of genes must be distinguished based on their impact on the developing brain. These include variants in genes related to the coagulation system, angiogenesis, mitochondrial functions, and oxidative phosphorylation, which contribute to encephaloclastic lesions in the developing brain (e.g., periventricular or subcortical leukomalacia). These are distinct from gene variants that lead to disruptions in neuronal induction, proliferation, migration, aggregation, differentiation, and synaptic connectivity. Neurological symptoms, such as the development of spastic hemiparesis/cerebral palsy, can arise from genetically caused structural-functional disorders at both macroscopic (e.g., hemimegalencephaly) and microscopic levels (e.g., synaptic scaffolding). Additionally, disruptions in the structure and function of perineuronal networks must also be considered in this context.

The ultimate goal of this review is to describe and discuss the pathways involved in the pathogenesis of unilateral cerebral palsy in a differentiated manner, with a particular focus on molecular genetic aspects.

References

Poeppel D, Assaneo MF. Speech rhythms and their neural foundations. Nat Rev Neurosci 2020; 21(6): 322-34. DOI: https://doi.org/10.1038/s41583-020-0304-4

Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, et al. A lateralized brain network for visuospatial attention. Nat Neurosci 2011; 14(10): 1245-6. DOI: https://doi.org/10.1038/nn.2905

Zhao L, Matloff W, Shi Y, Cabeen RP, Toga AW. Mapping complex brain torque components and their genetic architecture and phenomic associations in 24,112 individuals. Biol Psychiatry 2022; 91(8): 753-68. DOI: https://doi.org/10.1016/j.biopsych.2021.11.002

Xiang L, Crow T, Roberts N. Cerebral torque is human-specific and unrelated to brain size. Brain Struct Funct 2019; 224(3): 1141-50. DOI: https://doi.org/10.1007/s00429-018-01818-0

Wan B, Bayrak S, Xu T, Schaare HL, Bethlehem RAI, Bernhardt BC, et al. Heritability and cross-species comparisons of human cortical functional organization asymmetry. Elife 2022; 11: e77215. DOI: https://doi.org/10.7554/eLife.77215

Duboc V, Dufourcq P, Blader P, Roussigné M. Asymmetry of the brain: Development and implications. Annu Rev Genet 2015; 49: 647-72. DOI: https://doi.org/10.1146/annurev-genet-112414-055322

Wang J, Ma S, Yu P, He X. Evolution of human brain left-right asymmetry: old genes with new functions. Mol Biol Evol 2023; 40(12): msad181. DOI: https://doi.org/10.1093/molbev/msad181

Abu-Rustum RS, Ziade MF, Abu-Rustum SE. Reference values for the right and left fetal choroid plexus at 11 to 13 weeks: an early sign of “developmental” laterality? J Ultrasound Med 2013; 32(9): 1623-9. DOI: https://doi.org/10.7863/ultra.32.9.1623

Sha Z, Schijven D, Carrion-Castillo A, Joliot M, Mazoyer B, Fisher SE, et al. The genetic architecture of the structural left-right asymmetry of the human brain. Nat Hum Behav 2021; 5(9): 1226-39. DOI: https://doi.org/10.1038/s41562-021-01069-w

Kasprian G, Langs G, Brugger PC, Bittner M, Weber M, Arantes M, et al. The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 2011; 21(5): 1076-83. DOI: https://doi.org/10.1093/cercor/bhq179

McCartney G, Hepper P. Development of lateralized behaviour in the human fetus from 12 to 27 weeks’ gestation. Dev Med Child Neurol 1999; 41(2): 83-6. DOI: https://doi.org/10.1017/S0012162299000183

Sun T, Patoine C, Abu-Khalil A, Visvader J, Sum E, Cherry TJ, et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 2005; 308(5729): 1794-8.

Sun T, Collura RV, Ruvolo M, Walsh CA. Genomic and evolutionary analyses of asymmetrically expressed genes in human fetal left and right cerebral cortex. Cereb Cortex 2006; 16 Suppl 1: i18-25. DOI: https://doi.org/10.1093/cercor/bhk026

Miao N, Lai X, Zeng Z, Cai W, Chen W, Sun T. Differential expression of microRNAs in the human fetal left and right cerebral cortex. Mol Biol Rep 2020; 47(9): 6573-86.

Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3(3): fcab211. DOI: https://doi.org/10.1093/braincomms/fcab211

Güntürkün O, Ocklenburg S. Ontogenesis of lateralization. Neuron 2017; 94(2): 249-63. DOI: https://doi.org/10.1016/j.neuron.2017.02.045

Sha Z, Schijven D, Francks C. Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Mol Psychiatry 2021; 26(12): 7652-60. DOI: https://doi.org/10.1038/s41380-021-01204-z

Mundorf A, Peterburs J, Ocklenburg S. Asymmetry in the central nervous system: a clinical neuroscience perspective. Front Syst Neurosci 2021; 15: 733898. DOI: https://doi.org/10.3389/fnsys.2021.733898

Caprara ALF, Rissardo JP, Nagele EP. Rasmussen encephalitis: clinical features, pathophysiology, and management strategies—a comprehensive literature review. Medicina (Kaunas) 2024; 60(11): 1858. DOI: https://doi.org/10.3390/medicina60111858

Ai J, Wang Y, Liu D, Fan D, Wang Q, Li T, et al. Genetic factors in Rasmussen’s encephalitis characterized by whole-exome sequencing. Front Neurosci 2021; 15: 744429. DOI: https://doi.org/10.3389/fnins.2021.744429

Wu ZM, Wang P, Yang L, Liu L, Sun L, An L, et al. Altered brain white matter microstructural asymmetry in children with ADHD. Psychiatry Res 2020; 285: 112817. DOI: https://doi.org/10.1016/j.psychres.2020.112817

Guey S, Hervé D. Main features of COL4A1-COL4A2 related cerebral microangiopathies. Cereb Circ CognBehav 2022; 3: 100140.

Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat 2020; 16: 1505-18. DOI: https://doi.org/10.2147/NDT.S235165

Horber V, Grasshoff U, Sellier E, Arnaud C, Krägeloh-Mann I, Himmelmann K. The role of neuroimaging and genetic analysis in the diagnosis of children with cerebral palsy. Front Neurol 2021; 11: 628075. DOI: https://doi.org/10.3389/fneur.2020.628075

Janzing AM, Eklund E, De Koning TJ, Eggink H. Clinical characteristics suggestive of a genetic cause in cerebral palsy: a systematic review. Pediatr Neurol 2024; 153: 144-51. DOI: https://doi.org/10.1016/j.pediatrneurol.2024.01.025

Martin P. Verschlechterungmotorischer Funktionenbei Cerebralparesen (CP) im Erwachsenenalter. In: Bredel-Geissler A, Martin P, Grimmer A, editors. Klinische Sympto-mebei Menschen mitneuronalen Entwicklungsstörungen. Giessen: Psychosozial-Verlag; 2024. p. 311-26. DOI: https://doi.org/10.30820/9783837979930-311

Srivastava S, Lewis SA, Cohen JS, Zhang B, Aravamuthan BR, Chopra M, et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in cerebral palsy: a systematic review and meta-analysis. JAMA Neurol 2022; 79(12): 1287-95. DOI: https://doi.org/10.1001/jamaneurol.2022.3549

Gonzalez-Mantilla PJ, Hu Y, Myers SM, Finucane BM, Ledbetter DH, Martin CL, et al. Diagnostic yield of exome sequencing in cerebral palsy and implications for genetic testing guidelines: a systematic review and meta-analysis. JAMA Pediatr 2023; 177(5): 472-8. DOI: https://doi.org/10.1001/jamapediatrics.2023.0008

Xu Y, Li Y, Richard SA, Sun Y, Zhu C. Genetic pathways in cerebral palsy: a review of the implications for precision diagnosis and understanding disease mechanisms. Neural Regen Res 2024; 19(7): 1499-508.

MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015; 213(6): 779-88. DOI: https://doi.org/10.1016/j.ajog.2015.05.034

Basu AP, Low K, Ratnaike T, Rowitch D. Genetic investigations in cerebral palsy. Dev Med Child Neurol 2025; 67(2): 177-85.

Guey S, Hervé D. Main features of COL4A1-COL4A2 related cerebral microangiopathies. Cereb Circ CognBehav 2022; 3: 100140. DOI: https://doi.org/10.1016/j.cccb.2022.100140

Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, et al. Adenomatous polyposis coli regulates oligo-dendroglial development. J Neurosci 2013; 33(7): 3113-30. DOI: https://doi.org/10.1523/JNEUROSCI.3467-12.2013

Thorarensen O, Ryan S, Hunter J, Younkin DP. Factor V Leiden mutation: an unrecognized cause of hemiplegic cerebral palsy, neonatal stroke, and placental thrombosis. Ann Neurol 1997; 42(3): 372-5. DOI: https://doi.org/10.1002/ana.410420316

Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 1998; 44(4): 665-75. DOI: https://doi.org/10.1002/ana.410440413

MacLennan AH. A template for defining a causal relation between acute events and cerebral palsy: international consensus statement. BMJ 1999; 319(7216): 1054-9. DOI: https://doi.org/10.1136/bmj.319.7216.1054

Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, et al. Fetal exposure to intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol 2000; 182(3): 675-81. DOI: https://doi.org/10.1067/mob.2000.104207

Bashiri A, Burstein E, Mazor M. Cerebral palsy and fetal inflammatory response syndrome: a review. J Perinat Med 2006; 34(1): 5-12. DOI: https://doi.org/10.1515/JPM.2006.001

Gibson CS, MacLennan AH, Hague WM, Haan EA, Priest K, Chan A, et al. Associations between inherited thrombophilias, gestational age, and cerebral palsy. Am J Obstet Gynecol 2005; 193(4): 1437. DOI: https://doi.org/10.1016/j.ajog.2005.02.107

Vidak HK, Ivkovic TC, Vidak Z, Kapitanovic S. COX-1 and COX-2 polymorphisms in susceptibility to cerebral palsy in very preterm infants. Mol Neurobiol 2017; 54(2): 930-8. DOI: https://doi.org/10.1007/s12035-016-9713-9

Gadisseux JF, Evrard P. Glial-neuronal relationship in the developing central nervous system. Dev Neurosci 1985; 7(1): 12-32. DOI: https://doi.org/10.1159/000112273

Barkovich AJ, Kjos BO. Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. Radiology 1992; 182(2): 493-9. DOI: https://doi.org/10.1148/radiology.182.2.1732969

Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 1972; 145(1): 61-84. DOI: https://doi.org/10.1002/cne.901450105

Volpe JJ. Neurology of the newborn. 3rd ed. Philadelphia: Saunders; 1995.

Harding B. Gray matter heterotopia. In: Guerrini R, Andermann F, Canapicchi R, Roger J, Zilfkin B, Pfanner P, editors. Dysplasias of cerebral cortex and epilepsy. Philadelphia: Lippincott-Raven; 1996. p. 81-8.

Friede RL. Developmental neuropathology. 2nd ed. Berlin: Springer; 1989. DOI: https://doi.org/10.1007/978-3-642-73697-1

Morrell F, Whisler WW, Hoeppner TJ, Smith MC, Kanner AM, Pierre-Louis SJ, et al. Electrophysiology of heterotopic gray matter in the “double cortex” syndrome. Epilepsia 1992; 33 Suppl 3: 76. (abstract).

Spreer J, Martin P, Greenlee MW, Wohlfarth R, Hammen A, Arnold SM, et al. Functional MRI in patients with band heterotopia. Neuroimage 2001; 14(2): 357-65. DOI: https://doi.org/10.1006/nimg.2001.0813

Jirsch JD, Bernasconi N, Villani F, Vitali P, Avanzini G, Bernasconi A. Sensorimotor organization in double cortex syndrome. Hum Brain Mapp 2006; 27(6): 535-43. DOI: https://doi.org/10.1002/hbm.20197

Pinard J, Feydy A, Carlier R, Perez N, Pierot L, Burnod Y. Functional MRI in double cortex: functionality of heterotopia. Neurology 2000; 54(7): 1531-3. DOI: https://doi.org/10.1212/WNL.54.7.1531

Torres FR, Montenegro MA, Marques-de-Faria AP, Guerrino MM, Cendes F, Lopes-Cendes I. Mutation screening in a cohort of patients with lissencephaly and subcortical band heterotopia. Neurology 2004; 62(5): 799-802. DOI: https://doi.org/10.1212/01.WNL.0000113725.46254.FD

Razek AAKA, Kandell AY, Elsorgy LG, Elmongy A, Basett AA. Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol 2009; 30(1): 4-11. DOI: https://doi.org/10.3174/ajnr.A1223

Di Donato N, Timms AE, Aldinger KA, Mirzana GM, Bennett JT, Collins S, et al. Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet Med 2018; 20(11): 1354-64. DOI: https://doi.org/10.1038/gim.2018.8

Garel C. Abnormalities of proliferation, neuronal migration, and cortical organization. In: Garel C, editor. MRI of the fetal brain: normal development and cerebral pathologies. Berlin: Springer; 2004. p. 151-75. DOI: https://doi.org/10.1007/978-3-642-18747-6_10

Cen Z, Guo Y, Lou Y, Jiang B, Wang J, Feng J. De novo mutation in DEPDC5 associated with unilateral pachygyria and intractable epilepsy. Seizure 2017; 50: 1-3. DOI: https://doi.org/10.1016/j.seizure.2017.03.014

Caraballo RH, Cersósimo RO, Fejerman N. A particular type of epilepsy in patients with congenital hemiparesis associated with polymicrogyria or unilateral pachygyria. Rev Neurol 1997; 25(142): 1058-63. PMID: 9436287.

Oegema R, Cushion TD, Phelps IG, Chung SK, Dempsey JC, Collins S, et al. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Hum Mol Genet 2015; 24(18): 5313-25. DOI: https://doi.org/10.1093/hmg/ddv250

Mutch CA, Poduri A, Sahin M, Barry B, Walsh CA, Barkovich AJ. Disorders of microtubule function in neurons: imaging correlates. AJNR Am J Neuroradiol 2016; 37(3): 528-35. DOI: https://doi.org/10.3174/ajnr.A4552

Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: the emergence of cortical structure and folding. Dev Cell 2023; 58(20): 2836-49. DOI: https://doi.org/10.1016/j.devcel.2023.11.004

Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet C Semin Med Genet 2014; 166C(2): 227-39. DOI: https://doi.org/10.1002/ajmg.c.31399

Stutterd CA, Brock S, Stouffs K, Fanjul-Fernandez M, Lockart PJ, McGillivary G, et al. Genetic heterogeneity of polymicrogyria: study of 123 patients using deep sequencing. Brain Commun 2020; 3(1): fcaa221. DOI: https://doi.org/10.1093/braincomms/fcaa221

Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, et al. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143: 2874-94. DOI: https://doi.org/10.1093/brain/awaa174

Pascual-Castroviejo I, Pascual-Pascual SI, Viano J, Matinez V, Palencia R. Unilateral polymicrogyria: a common cause of hemiplegia of prenatal origin. Brain Dev 2001; 23: 216-22. DOI: https://doi.org/10.1016/S0387-7604(01)00211-X

Chang BS, Apse KA, Caraballo R, Mclellan A, Jacobson RD, Valente KD, et al. A familial syndrome of unilateral polymicrogyria affecting the right hemisphere. Neurology 2006; 66: 133-5. DOI: https://doi.org/10.1212/01.wnl.0000191393.06679.e9

Cavallin M, Mine M, Boddaert N, Lepage JM, Coste T, Lopez-Gonzalez V, et al. Further refinement of COL4A1 and COL4A2 related cortical malformations. Eur J Med Genet 2018; 61: 765-72. DOI: https://doi.org/10.1016/j.ejmg.2018.10.004

Alkareem M, Ahmed H, Ahmed G. Unilateral right closed-lip schizencephaly. BMJ Case Rep 2020; 13: e235004. DOI: https://doi.org/10.1136/bcr-2020-235004

Braga VL, Silva da Costa MD, Riera R, dos Santos Rocha LP, de Oliveira Santso BF, Hondo TTMH, et al. Schizencephaly: a review of 734 patients. Pediatr Neurol 2018; 87: 23-9. DOI: https://doi.org/10.1016/j.pediatrneurol.2018.08.001

Hino-Fukuyo N, Togashi N, Takahashi R, Saito J, Takehiko I, Wakaba E, et al. Neuroepidemiology of porencephaly, schizencephaly, and hydranencephaly in Miyagi Prefecture, Japan. Pediatr Neurol 2016; 54: 39-42. DOI: https://doi.org/10.1016/j.pediatrneurol.2015.08.016

Mellado C, Poduri A, Gleason D, Elhosary PC, Barry BJ, Partlow JN, et al. Candidate gene sequencing of LHX2, HESX1, and SOX2 in a large schizencephaly cohort. Am J Med Genet A 2010; 152A: 2736-42. DOI: https://doi.org/10.1002/ajmg.a.33684

Hébert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 2008; 9: 678-85. DOI: https://doi.org/10.1038/nrn2463

Gulisano M, Broccoli V, Pardini C, Boncinelli E. Emx1 and EMX2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in mouse. Eur J Neurosci 1996; 8: 1403-6. DOI: https://doi.org/10.1111/j.1460-9568.1996.tb01590.x

Jaiswal V, Hanif M, Sarfraz Z, Nepal G, Naz S, Mukherjee D, et al. Hemimegalencephaly: a rare congenital malformation of cortical development. Clin Case Rep 2021; 9(12): e05238.

Bosman C, Boldrini R, Dimitri L, Di Rocco C, Corsi A. Hemimegalencephaly. Histological, immunohistochemical, ultrastructural, and cytofluorimetric study of six patients. Childs Nerv Syst 1996; 12: 765-75. DOI: https://doi.org/10.1007/BF00261595

Laurence KM. A case of unilateral hemimegalencephaly. Dev Med Child Neurol 1964; 6: 585-90. DOI: https://doi.org/10.1111/j.1469-8749.1964.tb02797.x

Gross H, Uiberrak D. Clinical and anatomical findings in hemi-megalencephaly; role of cerebral hyperplasia and local gigantism associated with phacomatosis. Virchows Arch Pathol Anat Physiol Klin Med 1955; 327: 577-89. DOI: https://doi.org/10.1007/BF00954939

Bignami A, Palladini G, Zappella M. Unilateral megalencephaly with nerve cell hypertrophy. An anatomical and quantitative histochemical study. Brain Res 1968; 9: 103-14. DOI: https://doi.org/10.1016/0006-8993(68)90260-6

Friede RL. Disturbances in bulk growth: megalencephaly, micrencephaly, atelencephaly, and others. In: Friede RL, editor. Developmental neuropathology. Berlin, Heidelberg: Springer-Verlag; 1989. p. 296-308. DOI: https://doi.org/10.1007/978-3-642-73697-1_25

De Rosa MJ, Secor DL, Barsom M, Fisher RS, Vinters HV. Neuropathologic findings in surgically treated hemimegalencephaly. Acta Neuropathol 1992; 84: 250-60. DOI: https://doi.org/10.1007/BF00227817

Massimi L, Di Rocco C. Hemimegalencephaly. In: Di Rocco C, Pang D, Rutka J, editors. Textbook of pediatric neurosurgery. Cham: Springer; 2018. p. 1-43. DOI: https://doi.org/10.1007/978-3-319-31512-6_47-1

Flores-Sarnat L, Sarnat HB. Phenotype/genotype correlations in epidermal nevus syndrome as a neurocristopathy. Handb Clin Neurol 2015; 132: 9-25. DOI: https://doi.org/10.1016/B978-0-444-62702-5.00002-0

Griffin NG, Cronin KD, Walley NM, Hulette CM, Grant GA, Mikati MA, et al. Somatic uniparental disomy of Chromosome 16p in hemimegalencephaly. Cold Spring Harb Mol Case Stud 2017; 3(5): a001735. DOI: https://doi.org/10.1101/mcs.a001735

Jaiswal V, Hanif M, Sarfraz Z, Nepal G, Naz S, Mukherjee D, et al. Hemimegalencephaly: A rare congenital malformation of cortical development. Clin Case Rep 2021; 9: e05238. DOI: https://doi.org/10.1002/ccr3.5238

Basu AP, Low K, Ratnaike T, Rowich D. Genetic investigations in cerebral palsy. Dev Med Child Neurol 2025; 67: 177-85. DOI: https://doi.org/10.1111/dmcn.16080

Zarrei M, Fehlinger DL, Mawjee K, Switzer K, Thiruvahindrapuram B, Walker S, et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 2018; 20: 172-80. DOI: https://doi.org/10.1038/gim.2017.83

Xu Y, Li Y, Richard SA, Sun Y, Zhu C. Genetic pathways in cerebral palsy: a review of the implications for precision diagnosis and understanding disease mechanisms. Neural Regen Res 2024; 19: 1499-508. DOI: https://doi.org/10.4103/1673-5374.385855

Sun T, Walsh CA. Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci 2006; 7: 655-62. DOI: https://doi.org/10.1038/nrn1930

Sun T, Patoine C, Abukhalil A, Visvader J, Sum E, Cherry TJ, et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 2005; 308: 1794-8. DOI: https://doi.org/10.1126/science.1110324

Miao N, Lai X, Zeng Z, Cau W, Chen W, Sun T. Differential expression of microRNAs in the human fetal left and right cerebral cortex. Mol Biol Rep 2020; 47: 6573-86. DOI: https://doi.org/10.1007/s11033-020-05708-9

Cederquist GY, Azim E, Shnider SJ, Padmanabhan H, Macklis JD. LMO4 establishes rostral motor cortex projection neuron subtype diversity. J Neurosci 2013; 33: 6321-32. DOI: https://doi.org/10.1523/JNEUROSCI.5140-12.2013

Sanchez B, Kraszewski P, Lee S, Cope EC. From molecules to behavior: Implications for perineuronal net remodeling in learning and memory. J Neurochem 2023; 00: 1-23.

Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20: 451-65. DOI: https://doi.org/10.1038/s41583-019-0196-3

Wagner M, Lévy J, Jung-Klawitter S, Bakhtiari S, Monteiro F, Maroofian R, et al. Loss of TNR causes a non-progressive neurodevelopmental disorder with spasticity and transient opisthotonus. Genet Med 2020; 22(6): 1061-8. DOI: https://doi.org/10.1038/s41436-020-0768-7

Published

2025-09-17

How to Cite

Martin, P. . (2025). Asymmetry of the Developing Brain, Structural Anomalies, and Genetic Variants in the Pathogenesis of Unilateral Spastic Cerebral Palsy (uCP), a Common Neurological Symptom in Intellectual Disability, is Discussed in the form of a Narrative Overview. Journal of Intellectual Disability - Diagnosis and Treatment, 13(3), 254–263. https://doi.org/10.6000/2292-2598.2025.13.03.1

Issue

Section

General Articles