The Impact of Immersive and Non-Immersive Virtual Reality Trends in Sensorimotor Recovery of Post-Stroke Patients-A Meta-Analysis
DOI:
https://doi.org/10.6000/2292-2598.2021.09.05.14Keywords:
Virtual Reality, Technology, Stroke, Sensorimotor Feedback, Environmental Impact, Health-related Quality of LifeAbstract
Virtual Reality (VR) is an approach in stroke rehabilitation with ever-improving technological advancement for targeted motor rehabilitation by providing a user interface in a simulated environment with proprioceptive and visual feedback. This meta-analysis intended to evaluate the impact of immersive and non-immersive VR-based interventions compared to conventional rehabilitation in sensorimotor recovery following stroke. Randomized Controlled Trials based on the impact of VR, either immersive or non-immersive type in comparison to conventional rehabilitation on post-stroke patients (>18 years) sensorimotor recovery were searched on six databases including Google Scholar, PEDro, MEDLINE, Cochrane Library, EMBASE, and Web of Science from August to November 2020. A total of 17 randomized controlled trials on VR based intervention showed significant improvement in sensorimotor recovery following a stroke in overall FMA outcomes in comparison to the control group with pool effects in terms of SMD in a random effect model showed an impact of 0.498 at 95% CI (p<0.001) depicts a moderate effect size. An immersive and non-immersive emerging VR trend appears to be a promising therapeutic tool in sensorimotor recovery following stroke.
References
Katan M, Luft A. Global burden of stroke. Semin Neurol 2018; 38(2): 208-211. https://doi.org/10.1055/s-0038-1649503 DOI: https://doi.org/10.1055/s-0038-1649503
Venketasubramanian N, Yoon BW, Pandian J, Navarro JC. Stroke epidemiology in south, east, and south-east Asia: A review. J Stroke 2017; 19(3): 286. https://doi.org/10.5853/jos.2017.00234 DOI: https://doi.org/10.5853/jos.2017.00234
Forman-Hoffman VL, Ault KL, Anderson WL, Weiner JM, Stevens A, Campbell VA, Armour BS. Disability status, mortality, and leading causes of death in the United States community population. Med 2015; 53(4): 346. https://doi.org/10.1097/MLR.0000000000000321 DOI: https://doi.org/10.1097/MLR.0000000000000321
Bender M, Jusufovic E, Railic V, Kelava S, Tinjak S, Dzevdetbegovic D, Mot D, Tresnjo M, Lakicevic S, PejanovicSkobic N, Sinanovic O. High burden of stroke risk factors in developing country: the case study of Bosnia-Herzegovina. Mater Sociomed 2017; 29(4): 277. https://doi.org/10.5455/msm.2017.29.277-279 DOI: https://doi.org/10.5455/msm.2017.29.277-279
Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, Pomeroy VM, Langhorne P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. CDSR 2014; (4). https://doi.org/10.1002/14651858.CD001920.pub3 DOI: https://doi.org/10.1161/STROKEAHA.114.006275
García-Rudolph A, Sánchez-Pinsach D, Salleras EO, Tormos JM. Subacute stroke physical rehabilitation evidence in activities of daily living outcomes: A systematic review of meta-analyses of randomized controlled trials. Medicine 2019; 98(8). https://doi.org/10.1097/MD.0000000000014501 DOI: https://doi.org/10.1097/MD.0000000000014501
Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Stroke 2018; 49(4): 160-1. https://doi.org/10.1161/STROKEAHA.117.020275 DOI: https://doi.org/10.1161/STROKEAHA.117.020275
Massetti T, Da Silva TD, Crocetta TB, Guarnieri R, De Freitas BL, Bianchi Lopes P, Watson S, Tonks J, de Mello Monteiro CB. The clinical utility of virtual reality in Neurorehabilitation: a systematic review. J Cent Nerv Syst Dis 2018; 10. https://doi.org/10.1177/1179573518813541 DOI: https://doi.org/10.1177/1179573518813541
Fugl-Meyer Assessment of Motor Recovery after Stroke [Internet]. Shirley Ryan Ability Lab. 2020 [cited 18 November 2020]. Available from: https://www.sralab.org/rehabilitationmeasures/fugl-meyer-assessment-motor-recovery-afterstroke.
Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovi? J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 34: 5928. https://doi.org/10.1136/bmj.d5928 DOI: https://doi.org/10.1136/bmj.d5928
Oh YB, Kim GW, Han KS, Won YH, Park SH, Seo JH, Ko MH. Efficacy of virtual reality combined with real instrument training for patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 20191; 100(8): 1400-8. https://doi.org/10.1016/j.apmr.2019.03.013 564 Journal of Intellectual Disability - Diagnosis and Treatment, 2021, Volume 9, No. 5 Rizvi et al. DOI: https://doi.org/10.1016/j.apmr.2019.03.013
Afsar SI, Mirzayev I, Yemisci OU, Saracgil SN. Virtual reality in upper extremity rehabilitation of stroke patients: a randomized controlled trial. J Stroke Cerebrovasc Dis 2018; 27(12): 3473-8. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007
Ballester BR, Maier M, Mozo RM, Castañeda V, Duff A, Verschure PF. Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. J Neuroeng Rehabilitation 2016; 13(1): 74. https://doi.org/10.1186/s12984-016-0178-x DOI: https://doi.org/10.1186/s12984-016-0178-x
Lee MM, Shin DC, Song CH. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study. J Phys Ther Sci 2016; 28(7): 2019-24. https://doi.org/10.1589/jpts.28.2019 DOI: https://doi.org/10.1589/jpts.28.2019
Park JH, Park JH. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial. J Phys Ther Sci 2016; 28(3): 811-5. https://doi.org/10.1589/jpts.28.811 DOI: https://doi.org/10.1589/jpts.28.811
Shin JH, Kim MY, Lee JY, Jeon YJ, Kim S, Lee S, Seo B, Choi Y. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabilitation 2016; 13(1): 17. https://doi.org/10.1186/s12984-016-0125-x DOI: https://doi.org/10.1186/s12984-016-0125-x
Kong KH, Loh YJ, Thia E, Chai A, Ng CY, Soh YM, Toh S, Tjan SY. Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: a randomized, controlled study. Top Stroke Rehabil 2016; 23(5): 333-40. https://doi.org/10.1080/10749357.2016.1139796 DOI: https://doi.org/10.1080/10749357.2016.1139796
Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int 2014; 2014. https://doi.org/10.1155/2014/752128 DOI: https://doi.org/10.1155/2014/752128
Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, Triandafilou KM, Kamper DG. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabilitation 2014; 11(1): 171. https://doi.org/10.1186/1743-0003-11-171 DOI: https://doi.org/10.1186/1743-0003-11-171
Shin JH, Ryu H, Jang SH. A task-specific interactive gamebased virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabilitation 2014; 11(1): 32. https://doi.org/10.1186/1743-0003-11-32 DOI: https://doi.org/10.1186/1743-0003-11-32
Viana RT, Laurentino GE, Souza RJ, Fonseca JB, Silva Filho EM, Dias SN, Teixeira-Salmela LF, Monte-Silva KK. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation 2014; 34(3): 437-46. https://doi.org/10.3233/NRE-141065 DOI: https://doi.org/10.3233/NRE-141065
Choi JH, Han EY, Kim BR, Kim SM, Im SH, Lee SY, Hyun CW. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Ann Rehabil Med 2014; 38(4): 485. https://doi.org/10.5535/arm.2014.38.4.485 DOI: https://doi.org/10.5535/arm.2014.38.4.485
Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, Kiper P, Cagnin A, Piron L. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabilitation 201; 10(1): 85. https://doi.org/10.1186/1743-0003-10-85 DOI: https://doi.org/10.1186/1743-0003-10-85
Levin MF, Snir O, Liebermann DG, Weingarden H, Weiss PL. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther 201; 1(1): 3. https://doi.org/10.1007/s40120-012-0003-9 DOI: https://doi.org/10.1007/s40120-012-0003-9
Kwon JS, Park MJ, Yoon IJ, Park SH. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation 2012; 31(4): 379-85. https://doi.org/10.3233/NRE-2012-00807 DOI: https://doi.org/10.3233/NRE-2012-00807
da Silva Cameirão M, Bermudez i Badia S, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci 2011; 29(5): 287-98. https://doi.org/10.3233/RNN-2011-0599 DOI: https://doi.org/10.3233/RNN-2011-0599
Piron L, Turolla A, Agostini M, Zucconi CS, Ventura L, Tonin P, Dam M. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural 2010; 24(6): 501-8. https://doi.org/10.1177/1545968310362672 DOI: https://doi.org/10.1177/1545968310362672
Saposnik G, Levin M. Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke 2011; 42: 1380-86. https://doi.org/10.1161/STROKEAHA.110.605451 DOI: https://doi.org/10.1161/STROKEAHA.110.605451