Gliadin Degradation Ability of Artisanal Lactic Acid Bacteria, The Potential Probiotics from Dairy Products

Authors

  • Gokcen Komen Department of Food Engineering, Izmir Institute of Technology, Faculty of Engineering, 35430, Urla, Izmir, Turkey
  • Ayse Handan Baysal Department of Food Engineering, Izmir Institute of Technology, Faculty of Engineering, 35430, Urla, Izmir, Turkey
  • Hayriye Sebnem Harsa Department of Food Engineering, Izmir Institute of Technology, Faculty of Engineering, 35430, Urla, Izmir, Turkey

DOI:

https://doi.org/10.6000/1929-5634.2013.02.03.4

Keywords:

Gliadin, sourdough, lactic acid bacteria, probiotic, celiac

Abstract

Selected Lactobacillus spp. with high protease and acid producing capacity was explored for effective gliadin degradation in wheat sourdough environment. The total titratable acidity (TTA), pH and lactic acid bacteria (LAB) counts were evaluated. At the end of fermentation, the acidity and pH of the sourdough samples reached to 13.49-17.34 and 3.84-3.52 range, respectively. LAB population was enumerated as 107-109 colony forming unit (CFU)/g dough. Gliadin profiles were examined qualitatively using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional electrophoresis (2-DE) and reverse phase-high performance liquid chromatography (RP-HPLC) techniques. Especially RP-HPLC could be considered as a sensitive technique and is useful to determine the biochemical changes in gliadin fragmentation throughout sourdough fermentation process. LAB inoculated sourdoughs and chemically acidified sourdoughs generally represent similar gliadin degradation patterns. Although the total removal of gliadin toxicity could not be achieved in all dough formulations, it may be beneficial to use LAB to improve the dough and bread quality through the exploration of its bioconversion by-products.

References

Wieser H. Chemistry of gluten proteins. Food Microbiol 2007; 24(2): 115-9. http://dx.doi.org/10.1016/j.fm.2006.07.004 DOI: https://doi.org/10.1016/j.fm.2006.07.004

Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 2008; 152(3): 552-8. http://dx.doi.org/10.1111/j.1365-2249.2008.03635.x DOI: https://doi.org/10.1111/j.1365-2249.2008.03635.x

Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, et al. Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 2006; 291(4): G621-9. http://dx.doi.org/10.1152/ajpgi.00034.2006 DOI: https://doi.org/10.1152/ajpgi.00034.2006

Mearin ML. Celiac disease among children and adolescents. Curr Probl Pediatr Adolesc Health Care 2007; 37(3): 86-105. http://dx.doi.org/10.1016/j.cppeds.2007.01.001 DOI: https://doi.org/10.1016/j.cppeds.2007.01.001

Fasano A, Catassi C. Current approaches to diagnosis and treatment of celiac disease: An evolving spectrum. Gastroenterology 2001; 120: 636-51. http://dx.doi.org/10.1053/gast.2001.22123 DOI: https://doi.org/10.1053/gast.2001.22123

Gänzle MG. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. Forthcoming 2013. http://dx.doi.org/10.1016/j.fm.2013.04.007 DOI: https://doi.org/10.1016/j.fm.2013.04.007

Bleukx W, Reels SP, Delcour JA. On the presence and activities of proteolytic enzymes in vital wheat gluten. J Cereal Sci 1997; 26: 183-93. http://dx.doi.org/10.1006/jcrs.1997.0123 DOI: https://doi.org/10.1006/jcrs.1997.0123

Bleukx W, Torrekens S, Van Leuven F, Delcour JA. Purification, properties and N-terminal amino acid sequence of a wheat gluten aspartic proteinase. J Cereal Sci 1998; 28: 223-32. http://dx.doi.org/10.1016/S0733-5210(98)90002-9 DOI: https://doi.org/10.1016/S0733-5210(98)90002-9

Bleukx W, Brijs K, Torrekens S, Van Leuven F, Delcour JA. Specifity of a wheat gluten aspartic proteinase. Biochim Biophys Acta 1998; 1387: 317-24. http://dx.doi.org/10.1016/S0167-4838(98)00146-0 DOI: https://doi.org/10.1016/S0167-4838(98)00146-0

Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M. Proteolysis by sourdough lactic acid bacteria: Effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 2002; 68(2): 623-33. http://dx.doi.org/10.1128/AEM.68.2.623-633.2002 DOI: https://doi.org/10.1128/AEM.68.2.623-633.2002

Di Cagno R, De Angelis M, Auricchio S, Grecu L, Clarke C, De Vincenzi M, et al. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 2004; 70(2): 1088-96. http://dx.doi.org/10.1128/AEM.70.2.1088-1096.2004 DOI: https://doi.org/10.1128/AEM.70.2.1088-1096.2004

Tuukkanen K, Loponen J, Mikola M, Sontag-Strohm T, Salovaara H. Degradation of secalins during rye sourdough fermentation. Cereal Chem 2005; 82(6): 677-82. http://dx.doi.org/10.1094/CC-82-0677 DOI: https://doi.org/10.1094/CC-82-0677

De Angelis M, Rizzello CG, Fasano A, Clemente MG, De Simone C, Silano M, et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue. Biochim Biophys Acta 2006; 1762(1): 80-93. http://dx.doi.org/10.1016/j.bbadis.2005.09.008 DOI: https://doi.org/10.1016/j.bbadis.2005.09.008

Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: New perspectives for celiac disease. Appl Environ Microbiol 2007; 73(14): 4499-507. http://dx.doi.org/10.1128/AEM.00260-07 DOI: https://doi.org/10.1128/AEM.00260-07

Gänzle MG, Loponen J, Gobbetti M. Proteolysis in sourdough fermentations: Mechanisms and potential for improved bread quality. Trends Food Sci Technol 2008; 19(10): 513-21. http://dx.doi.org/10.1016/j.tifs.2008.04.002 DOI: https://doi.org/10.1016/j.tifs.2008.04.002

Arendt EK, Ryan LAM, Dal Bello F. Impact of sourdough on the texture of bread. Food Microbiol 2007; 24: 165-74. http://dx.doi.org/10.1016/j.fm.2006.07.011 DOI: https://doi.org/10.1016/j.fm.2006.07.011

Poutanen K, Flander L, Katina K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 2009; 26: 693-9. http://dx.doi.org/10.1016/j.fm.2009.07.011 DOI: https://doi.org/10.1016/j.fm.2009.07.011

Hansen A, Schieberle P. Generation of aroma compounds during sourdough fermentation: Applied and fundamental aspects. Trends Food Sci Technol 2005; 16: 85-94. http://dx.doi.org/10.1016/j.tifs.2004.03.007 DOI: https://doi.org/10.1016/j.tifs.2004.03.007

Ganzle MG, Vogel RF. Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int J Food Microbiol 2003; 80(1): 31-45. http://dx.doi.org/10.1016/S0168-1605(02)00146-0 DOI: https://doi.org/10.1016/S0168-1605(02)00146-0

Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol 2003; 21(6): 269-74. http://dx.doi.org/10.1016/S0167-7799(03)00107-0 DOI: https://doi.org/10.1016/S0167-7799(03)00107-0

Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, et al. Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 2006; 54: 9873-81. http://dx.doi.org/10.1021/jf061393 DOI: https://doi.org/10.1021/jf061393+

Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, et al. In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 2009; 26: 734-43. http://dx.doi.org/10.1016/j.fm.2009.07.008 DOI: https://doi.org/10.1016/j.fm.2009.07.008

Lacaze G, Wick M, Cappelle S. Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiol 2007; 24: 155-60. http://dx.doi.org/10.1016/j.fm.2006.07.015 DOI: https://doi.org/10.1016/j.fm.2006.07.015

Tieking M, Gänzle MG. Exopolysaccharides from cereal associated lactobacilli. Trends Food Sci Technol 2005; 16: 79-84. http://dx.doi.org/10.1016/j.tifs.2004.02.015 DOI: https://doi.org/10.1016/j.tifs.2004.02.015

Abraham AG, De Antoni GL, Añon MC. Proteolytic activity of Lactobacillus bulgaricus grown in milk. J Dairy Sci 1993; 76(6): 1498-505. http://dx.doi.org/10.3168/jds.S0022-0302(93)77481-0 DOI: https://doi.org/10.3168/jds.S0022-0302(93)77481-0

González L, Sacristán N, Arenas R, Fresno JM, Tornadijo ME. Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiol 2010; 27(5): 592-7. http://dx.doi.org/10.1016/j.fm.2010.01.004 DOI: https://doi.org/10.1016/j.fm.2010.01.004

Plessas S, Alexopoulos A, Mantzourani I, Koutinas A, Voidarou C, Stavropoulou E, et al. Application of novel starter cultures for sourdough bread production. Anaerobe 2011; 17: 486-9. http://dx.doi.org/10.1016/j.anaerobe.2011.03.022 DOI: https://doi.org/10.1016/j.anaerobe.2011.03.022

Plessas S, Fisher A, Koureta K, Psarianos C, Nigam P, Koutinas AA. Application of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and L. helveticus for sourdough bread making. Food Chem 2008; 106: 985-90. http://dx.doi.org/10.1016/j.foodchem.2007.07.012 DOI: https://doi.org/10.1016/j.foodchem.2007.07.012

Plessas S, Pherson L, Bekatorou A, Nigam P, Koutinas AA. Bread making using kefir grains as baker’s yeast. Food Chem 2005; 93: 585-9. http://dx.doi.org/10.1016/j.foodchem.2004.10.034 DOI: https://doi.org/10.1016/j.foodchem.2004.10.034

Bulut C. Isolation and molecular characterization of lactic acid bacteria from cheese [Master Thesis]. Izmir: Izmir Institute of Technology 2003.

Çelik, ES. Determination of aroma compounds and exopolysaccharides formation by lactic acid bacteria isolated from traditional yogurts [Master Thesis]. Izmir: Izmir Institute of Technology 2007.

Erkus O. Isolation, phenotypic and genotypic characterization of yoghurt starter bacteria [Master Thesis]. Izmir: Izmir Institute of Technology 2007.

AACC. Crude protein- Kjeldahl method, boric acid modification. 11th Edition. AACC International, St. Paul, MN, USA; 1999. 3 p. Method No.: 46-16.01. http://dx.doi.org/10.1094/AACCIntMethod-46-16.01 DOI: https://doi.org/10.1094/AACCIntMethod-46-16.01

ICC. Determination of the moisture content of cereals and cereal products (Practical method). Vienna, Austria; 1976. Standard No.: 110/1.

ICC. Determination of ash in cereals and cereal products. Vienna, Austria; 1990. Standard No.: 104/1.

Cemeroğlu B, Eds. Gıda analizlerinde genel yöntemler, gıda analizleri. Ankara: Bizim Grup Basımevi 2010.

Weiss W, Vogelmeier C, Görg A. Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers' asthma. Electrophoresis 1993; 14(1): 805-16. http://dx.doi.org/10.1002/elps.11501401126 DOI: https://doi.org/10.1002/elps.11501401126

Osborne TB. The protein of the wheat kernel. Washington: Carnegie Institute 1907. DOI: https://doi.org/10.5962/bhl.title.26152

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5. http://dx.doi.org/10.1038/227680a0 DOI: https://doi.org/10.1038/227680a0

Qian Y, Preston K, Krokhin O, Mellish J, Ens W. Characterization of wheat gluten proteins by HPLC and MALDI TOF mass spectrometry. J Am Soc Mass Spectrom 2008; 19(10): 1542-50. http://dx.doi.org/10.1016/j.jasms.2008.06.008 DOI: https://doi.org/10.1016/j.jasms.2008.06.008

Codex Alimentarius Commission. Codex standard for wheat flour. USA; 1995. 3 p. Standard No.: 152-1985. Available from: http://www.codexalimentarius.org/standards

Thiele C, Gänzle MG, Vogel RF. Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 2002; 79(1): 45-51. http://dx.doi.org/10.1094/CCHEM.2002.79.1.45 DOI: https://doi.org/10.1094/CCHEM.2002.79.1.45

Thiele C, Grassl S, Gänzle M. Gluten hydrolysis and depolymerization during sourdough fermentation. J Agric Food Chem 2004; 52(5): 1307-14. http://dx.doi.org/10.1021/jf034470z DOI: https://doi.org/10.1021/jf034470z

Loponen J, Kanerva P, Zhang C, Gänzle MG. Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J Agric Food Chem 2009; 57(2): 746-53. http://dx.doi.org/10.1021/jf803243w DOI: https://doi.org/10.1021/jf803243w

Lindsay MP, Skerritt JH. The glutenin macropolymer of wheat flour doughs: structure-function perspectives. Trends Food Sci Technol 1999; 10(8): 247-53. http://dx.doi.org/10.1016/S0924-2244(00)00004-2 DOI: https://doi.org/10.1016/S0924-2244(00)00004-2

Shewry PR, Tatham AS. Disulphide bonds in wheat gluten proteins. J Cereal Sci 1997; 25(3): 207-27. http://dx.doi.org/10.1006/jcrs.1996.0100 DOI: https://doi.org/10.1006/jcrs.1996.0100

Loponen J. Prolamin degradation in sourdoughs [Dissertation]. Helsinki: University of Helsinki; 2006 [cited 2012 Jan 8]. Available from: http://urn.fi/URN:ISBN:952-10-3582-X

Komen G. Structural changes of gliadins during sourdough fermentation as a promising approach to gluten-free diet [Master Thesis]. Izmir: Izmir Institute of Technology 2010.

Downloads

Published

2013-09-30

How to Cite

Komen, G., Baysal, A. H., & Harsa, H. S. (2013). Gliadin Degradation Ability of Artisanal Lactic Acid Bacteria, The Potential Probiotics from Dairy Products. Journal of Nutritional Therapeutics, 2(3), 163–172. https://doi.org/10.6000/1929-5634.2013.02.03.4

Issue

Section

Articles