Nutrition, Neuroinflammation and Cognition
DOI:
https://doi.org/10.6000/1929-5634.2015.04.03.4Keywords:
Microglia, Neuroinflammation, Neurodegenerative diseases, Malnutrition, Antioxidant, Nutrients, PhytochemicalsAbstract
Activation of microglia and astrocytes leads to the production of cytokines and other inflammatory mediators which may contribute to the apoptotic cell death of neurons observed in many neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Vulnerability of the central nervous system (CNS) to oxidative and inflammatory stress increases with age and has been postulated to be a leading contributing factor to the cognitive impairment and thereby development of neurodegenerative diseases. Suppression of microglial production of neurotoxic mediators may result in neuroprotection. This heightens the interest in the development of neuroinflammation-targeted therapeutics. Nutrition is involved in the pathogenesis of age-related cognitive decline and also neurodegenerative diseases. Certain nutrients facilitate human brain function with their immediate and long term effects. On the other hand, malnutrition influences the brain throughout life, with profound implications on cognitive decline and dementia. Several phytochemicals with potent antioxidant and anti-inflammatory activities, have been shown to repress microglial activation and exert neuroprotective effects. Thus this review highlights the role of foods, nutrients and phytochemicals in suppressing neuro-inflammation and also enhancing cognition.
References
Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study Alzheimer's Disease International Lancet. 2005; 366 (9503): 2112-7. http://www.ncbi.nlm.nih.gov/ pubmed/16360788 DOI: https://doi.org/10.1016/S0140-6736(05)67889-0
Lunn S, Sakowski S, Hur J, Feldman E. Stem Cell Technology for Neurodegenerative Diseases Ann Neurol 2011; 70(3): 353-361. doi: 10.1002/ana.22487. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177143/ DOI: https://doi.org/10.1002/ana.22487
Griffiths M, Neal JW, Gasque P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins Int Rev Neurobiol 2007; 82: 29-55. http://dx.doi.org/10.1016/S0074-7742(07)82002-2 DOI: https://doi.org/10.1016/S0074-7742(07)82002-2
Garden GA, Möller T. Microglia biology in health and disease. J Neuroimmune Pharmacol 2006; 1(2): 127-37. http://dx.doi.org/10.1007/s11481-006-9015-5 DOI: https://doi.org/10.1007/s11481-006-9015-5
Choi DK, Koppula S, Suk K Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 2011; 16(2): 1021-43. Published online 2013 Aug 14. http://dx.doi.org/10.3390/molecules16021021 DOI: https://doi.org/10.3390/molecules16021021
Dauncey MJ. Nutrition, the brain and cognitive decline: insights from epigenetics. Eur J Clin Nutr 2014; 68(11): 1179-85. http://dx.doi.org/10.1038/ejcn.2014.173 DOI: https://doi.org/10.1038/ejcn.2014.173
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15(5): 3517-55. http://dx.doi.org/10.3390/molecules15053517 DOI: https://doi.org/10.3390/molecules15053517
Borre YE, Panagaki T, Koelink PJ, Morgan ME, Hendriksen H, Garssen J, et al. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology 2014; 79: 738-49. http://dx.doi.org/10.1016/j.neuropharm.2013.11.009 DOI: https://doi.org/10.1016/j.neuropharm.2013.11.009
Gunawardena D, Shanmugam K, Low M, Bennett L, Govindaraghavan S, Head R, et al. Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods. Eur J Nutr 2014; 53(1): 335-43. http://dx.doi.org/10.1007/s00394-013-0531-9 DOI: https://doi.org/10.1007/s00394-013-0531-9
G0mez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 2008; 9(7): 568-578. http://dx.doi.org/10.1038/nrn2421 DOI: https://doi.org/10.1038/nrn2421
Kaplan R, Greenwood C, Winocur G, Wolever T. Dietary protein, carbohydrate and fat enhance memory performance in the healthy elderly. Am J Clin Nutr 2001; 74: 687-693. http://ajcn.nutrition.org/content/74/5/687 DOI: https://doi.org/10.1093/ajcn/74.5.687
Fischer K, Colombani PC, Langhans W, Wenk C. Carbohydrate to protein ratio in food and cognitive performance in the morning. Physiold Behav 2002; 75: 411-423. http://dx.doi.org/10.1016/S0031-9384(01)00676-X DOI: https://doi.org/10.1016/S0031-9384(01)00676-X
Roberts RO, Roberts LA, Geda YE, Cha RH, Pankratz VS, O'Connor HM, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis 2012; 32(2): 329-39. http://www.ncbi.nlm. nih.gov/pubmed/22810099 DOI: https://doi.org/10.3233/JAD-2012-120862
Brinkworth GD, Buckley JD, Noakes M, Clifton PM, Wilson CJ. Long-term effects of a very low-carbohydrate diet and a low-fat diet on mood and cognitive function. Arch Intern Med 2009; 169(20): 1873-80. http://dx.doi.org/10.1001/archinternmed.2009.329 DOI: https://doi.org/10.1001/archinternmed.2009.329
Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2: macronutrients. J Nutr Health Aging 2006; 10(5): 386-99. http://www.ncbi.nlm.nih.gov/ pubmed/17066210
Riby LM, McLaughlin J, Riby DM, Graham C. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults. Br J Nutr 2008; 100(5): 1128-34. http://dx.doi.org/10.1017/S0007114508971324 DOI: https://doi.org/10.1017/S0007114508971324
Gilsenan MB, de Bruin EA, Dye L. The influence of carbohydrate on cognitive performance: a critical evaluation from the perspective of glycaemic load. Br J Nutr 2009; 101(7): 941-9. http://dx.doi.org/10.1017/S0007114508199019 DOI: https://doi.org/10.1017/S0007114508199019
Philippou E, Constantinou M. The influence of glycemic index on cognitive functioning: a systematic review of the evidence. Adv Nutr 2014; 5(2): 119-30. http://dx.doi.org/10.3945/an.113.004960 DOI: https://doi.org/10.3945/an.113.004960
Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging 2012; 33(2): 425.e19-27. http://dx.doi.org/10.1016/j.neurobiolaging.2010.10.006 DOI: https://doi.org/10.1016/j.neurobiolaging.2010.10.006
Ooi CP, Loke SC, Yassin Z, Hamid TA. Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment. Cochrane Database Syst Rev 2011; (4): CD007220. http://dx.doi.org/10.1002/14651858.cd007220.pub2 DOI: https://doi.org/10.1002/14651858.CD007220.pub2
Hulsken S, Märtin A, Mohajeri MH, Homberg JR. Food-derived serotonergic modulators: effects on mood and cognition. Nutr Res Rev 2013; 26(2): 223-34. http://dx.doi.org/10.1017/S0954422413000164 DOI: https://doi.org/10.1017/S0954422413000164
Crichton GE, Murphy KJ, Bryan J. Dairy intake and cognitive health in middle-aged. South Australians Asia Pac J Clin Nutr 2010; 19(2): 161-71. http://www.ncbi.nlm.nih.gov/pubmed/ 20460228
Laye S, Dantzer D. Polyunsaturated Fatty Acids and Neuro-Inflammation Nutrient, stress and Medical Disorders Shlomo Yehuda, PhD David I. Mostofsky, PhD 2006. DOI: https://doi.org/10.1385/1-59259-952-4:353
Willis LM, Shukitt-Hale B, Joseph JA. Modulation of cognition and behavior in aged animals: role for antioxidant- and essential fatty acid-rich plant foods. Am J Clin Nutr 2009; 89(5): 1602S-1606S. http://dx.doi.org/10.3945/ajcn.2009.26736J
Laye S, Delpech JC, Smedt-Peyrusse VD, Joffrel C, Larrieu T, Madore C, et al. Neuroinflammation and aging: influence of dietary n-3 polyunsaturated fatty acid. Lipids and Brain 2011; 18(6): 301-306. http://www.ocl-journal.org/articles/ ocl/pdf/2011/06/ocl2011186p301.pdf DOI: https://doi.org/10.1051/ocl.2011.0412
Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005; 25(12): 3032-40. http://dx.doi.org/10.1523/JNEUROSCI.4225-04.2005 DOI: https://doi.org/10.1523/JNEUROSCI.4225-04.2005
Hashimoto M, Tanabe Y, Fujii Y, Kikuta T, Shibata H, Shido O. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. J Nutr 2005; 135(3): 549-55. http://www.ncbi.nlm.nih.gov/pubmed/15735092 DOI: https://doi.org/10.1093/jn/135.3.549
Connor WE, Connor SL. The importance of fish and docosahexaenoic acid in Alzheimer disease. Am J Clin Nutr 2007; 85(4): 929-30. http://www.ncbi.nlm.nih.gov/pubmed/ 17413088 DOI: https://doi.org/10.1093/ajcn/85.4.929
Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 2008; 155: 751-759. http://dx.doi.org/10.1016/j.neuroscience.2008.05.061 DOI: https://doi.org/10.1016/j.neuroscience.2008.05.061
Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res 2009; 1341: 32-40. http://dx.doi.org/10.1016/j.brainres.2009.05.018 DOI: https://doi.org/10.1016/j.brainres.2009.05.018
Bousquet M, Gue K, Emond V, Julien P, Kang JX, Cicchetti F, Calon F. Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson’s disease. J Lipid Res 2011; 52: 263-271. http://dx.doi.org/10.1194/jlr.M011692 DOI: https://doi.org/10.1194/jlr.M011692
Delpech JC, Madore C, Joffre C, Aubert A, Kang JX, Nadjar A, Layé S. Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology 2015; 40(3): 525-36. http://dx.doi.org/10.1038/npp.2014.196 DOI: https://doi.org/10.1038/npp.2014.196
Oh YT, Lee JY, Lee J, Kim H, Yoon KS, Choe W, Kang I. Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-kappaB signaling pathways. Neurosci Lett 2009; 464(2): 93-7. http://dx.doi.org/10.1016/j.neulet.2009.08.040 DOI: https://doi.org/10.1016/j.neulet.2009.08.040
Alemany R, Navarro MA, Vögler O, Perona JS, Osada J, Ruiz-Gutiérrez V. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain. Lipids 2010; 45(1): 53-61. http://dx.doi.org/10.1007/s11745-009-3370-y DOI: https://doi.org/10.1007/s11745-009-3370-y
Berr C, Portet F, Carriere I, Akbaraly TN, Feart C, Gourlet V, et al. Olive oil and cognition: results from the three-city study. Dement Geriatr Cogn Disord 2009; 28(4): 357-64. http://dx.doi.org/10.1159/000253483 DOI: https://doi.org/10.1159/000253483
Park JS, Woo MS, Kim SY, Kim WK, Kim HS. Repression of interferon-gamma-induced inducible nitric oxide synthase (iNOS) gene expression in microglia by sodium butyrate is mediated through specific inhibition of ERK signaling pathways. J Neuroimmunol 2005; 168: 56-64. http://dx.doi.org/10.1016/j.jneuroim.2005.07.003 DOI: https://doi.org/10.1016/j.jneuroim.2005.07.003
Vinolo M, Rodrigues H, Nachbar R, Curi R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients 2011; 3: 858-876. doi:10.3390/nu3100858. http://www.mdpi.com/ 2072-6643/3/10/858/htm DOI: https://doi.org/10.3390/nu3100858
Huskisson E, Maggini S, Ruf M. The influence of micronutrients on cognitive function and performance. J Int Med Res 2007; 35(1): 1-19. http://dx.doi.org/10.1177/147323000703500101 DOI: https://doi.org/10.1177/147323000703500101
Smith AD, Refsum H. Vitamin B-12 and cognition in the elderly. Am J Clin Nutr 2009; 89(2): 707S-11S. http://dx.doi.org/10.3945/ajcn.2008.26947D DOI: https://doi.org/10.3945/ajcn.2008.26947D
Morris M, Evans D, Bienias J, Tangney C, Hebert L, Scherr P, Schneider J. Dietary Folate and Vitamin B12 Intake and Cognitive Decline Among Community-Dwelling Older Persons Arch Neurol 2005; 62(4): 641-645. http://dx.doi.org/10.1001/archneur.62.4.641 DOI: https://doi.org/10.1001/archneur.62.4.641
Lokk J. Association of vitamin B12, folate, homocysteine and cognition in the elderly. Scandinavian Journal of Nutrition 2003; 47(3): 132-138. http://dx.doi.org/10.1080/11026480310000662 DOI: https://doi.org/10.1080/11026480310000662
Whalley LJ, Duthie SJ, Collins AR, Starr JM, Deary IJ, Lemmon H, et al. Homocysteine, antioxidant micronutrients and late onset dementia. Eur J Nutr 2014; 53(1): 277-85. http://dx.doi.org/10.1007/s00394-013-0526-6 DOI: https://doi.org/10.1007/s00394-013-0526-6
Harrison F. A critical review of Vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis 2012; 29(4): 711-26. doi: 10.3233/JAD-2012-111853. http://www.ncbi.nlm.nih.gov/pubmed/22366772 DOI: https://doi.org/10.3233/JAD-2012-111853
Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive impairment and Alzheimer's disease. Biochim Biophys Acta 2012; 1822(5): 631-8. http://dx.doi.org/10.1016/j.bbadis.2011.10.006 DOI: https://doi.org/10.1016/j.bbadis.2011.10.006
Miller JW. Vitamin D and cognitive function in older adults: are we concerned about vitamin D-mentia? Neurology 2010; 74(1): 13-5. http://dx.doi.org/10.1212/WNL.0b013e3181c719a2 DOI: https://doi.org/10.1212/WNL.0b013e3181c719a2
Balion C, Griffith LE, Strifler L, Henderson M, Patterson C, Heckman G, Llewellyn DJ, Raina. Vitamin D, cognition, and dementia: a systematic review and meta-analysis PNeurology 2012; 79(13): 1397-405. http://dx.doi.org/10.1212/WNL.0b013e31826c197f DOI: https://doi.org/10.1212/WNL.0b013e31826c197f
Falkingham M, Abdelhamid A, Curtis P, Fairweather-Tait S, Dye L, Hooper L. The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J 2010; 9: 4. http://dx.doi.org/10.1186/1475-2891-9-4 DOI: https://doi.org/10.1186/1475-2891-9-4
McNeill G, Avenell A, Campbell MK, Cook JA, Hannaford PC, Kilonzo MM, et al. Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: a randomised controlled trial. Nutr J 2007; 6: 10. http://dx.doi.org/10.1186/1475-2891-6-10 DOI: https://doi.org/10.1186/1475-2891-6-10
Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O. Neuroprotective Mechanisms of Natural Polyphenolic Compounds. Act Nerv Super Rediviva 2010; 52(3): 181-186. http://www.rediviva.sav.sk/52i3/181.pdf
Campos-Esparza MR, Sánchez-Gómez MV, Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 2009; 45(4): 358-68. http://dx.doi.org/10.1016/j.ceca.2008.12.007 DOI: https://doi.org/10.1016/j.ceca.2008.12.007
Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012; 120(3): 461-72. http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x DOI: https://doi.org/10.1111/j.1471-4159.2011.07594.x
Lamporta D, Dyeb L, Wightmanc J, Lawtonb C. The effects of flavonoid and other polyphenol consumption on cognitive performance: A systematic research review of human experimental and epidemiological studies. Nutrition and Aging 2012; 1: 5-25. http://iospress.metapress.com/content/ c813pm8470014458/ DOI: https://doi.org/10.3233/NUA-2012-0002
Lau FC, Bielinski DF, Joseph JA. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci Res 2007; 85: 1010-1017. http://dx.doi.org/10.1002/jnr.21205 DOI: https://doi.org/10.1002/jnr.21205
Shukitt-Hale B, Lau FC, Carey AN, Galli RL, Spangler EL, Ingram DK, Joseph JA. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutritional Neuroscience 2008; 11(4): 172-182. http://dx.doi.org/10.1179/147683008X301487 DOI: https://doi.org/10.1179/147683008X301487
Lau FC, Bielinski DF, Joseph JA. Inhibitory effect of blueberry extract on the production of inflammatory mediators in lps-activated bv2 microglia. Age 2006; 28(1): 46. http://www.ncbi.nlm.nih.gov/pubmed/17265471
Laua F, Josepha J, McDonald J, Kaltb W. Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-jB activation. J Funct Foods 2009; 274-283. http://dx.doi.org/10.1016/j.jff.2009.05.001 DOI: https://doi.org/10.1016/j.jff.2009.05.001
Joseph JA, Shukitt-Hale B, Willis LM. Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr 2009; 139(9): 1813S-7S. http://dx.doi.org/10.3945/jn.109.108266 DOI: https://doi.org/10.3945/jn.109.108266
Willis LM, Shukitt-Hale B, Joseph JA. Recent advances in berry supplementation and age-related cognitive decline. Curr Opin Clin Nutr Metab Care 2009; 12(1): 91-4. http://dx.doi.org/10.1097/MCO.0b013e32831b9c6e DOI: https://doi.org/10.1097/MCO.0b013e32831b9c6e
Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 2008; 105(21): 7534-9. http://dx.doi.org/10.1073/pnas.0802865105 DOI: https://doi.org/10.1073/pnas.0802865105
Spencer J. The impact of fruit flavonoids on memory and cognition. Br J Nutr 2010; 104(Suppl 3): S40-7. http://dx.doi.org/10.1017/S0007114510003934 DOI: https://doi.org/10.1017/S0007114510003934
Willis LM, Shukitt-Hale B, Joseph JA. Modulation of cognition and behavior in aged animals: role for antioxidant- and essential fatty acid-rich plant foods. Am J Clin Nutr 2009; 89(5): 1602S-1606S. http://dx.doi.org/10.3945/ajcn.2009.26736J DOI: https://doi.org/10.3945/ajcn.2009.26736J
Nehlig A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol 2013; 75(3): 716-27. doi: 10.1111/j.1365-2125.2012.04378.x http://www.ncbi.nlm.nih.gov/pubmed/22775434 DOI: https://doi.org/10.1111/j.1365-2125.2012.04378.x
Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52(1): 35-45. http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010 DOI: https://doi.org/10.1016/j.freeradbiomed.2011.09.010
Nurk E, Refsum H, Drevon CA, Tell GS, Nygaard HA, Engedal K, Smith AD. Intake of flavonoid-rich wine, tea, and
chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 2009; 139(1): 120-7. http://dx.doi.org/10.3945/jn.108.095182 DOI: https://doi.org/10.3945/jn.108.095182
Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 2010; 24(10): 1505-14. http://dx.doi.org/10.1177/0269881109106923 DOI: https://doi.org/10.1177/0269881109106923
Ho SC, Kuo CT. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem Toxicol 2014; 71: 176-82. http://dx.doi.org/10.1016/j.fct.2014.06.014 DOI: https://doi.org/10.1016/j.fct.2014.06.014
Shu Z, Yang B, Zhao H, Xu B, Jiao W, Wang Q, Wang Z, Kuang H. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol 2014; 19(2): 275-82. http://dx.doi.org/10.1016/j.intimp.2014.01.011 DOI: https://doi.org/10.1016/j.intimp.2014.01.011
Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou W, et al. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 2014; 264: 173-80. http://dx.doi.org/10.1016/j.bbr.2014.02.002 DOI: https://doi.org/10.1016/j.bbr.2014.02.002
Park JS, Park EM, Kim DH, Jung K, Jung JS, Lee EJ, et al. Anti-inflammatory mechanism of ginseng saponins in activated microglia. J Neuroimmunol 2009; 209(1-2): 40-9. http://dx.doi.org/10.1016/j.jneuroim.2009.01.020 DOI: https://doi.org/10.1016/j.jneuroim.2009.01.020
Barone E, Calabrese V, Mancuso C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 2009; 10(2): 97-108. http://dx.doi.org/10.1007/s10522-008-9160-8 DOI: https://doi.org/10.1007/s10522-008-9160-8
Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J Pharmacol Exp Ther 2008; 326(1): 196-208. http://dx.doi.org/10.1124/jpet.108.137455 DOI: https://doi.org/10.1124/jpet.108.137455
Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol 2012; 14(1): 13-20. http://dx.doi.org/10.1016/j.intimp.2012.06.003 DOI: https://doi.org/10.1016/j.intimp.2012.06.003
Ho S, Chang K, Chang P. Inhibition of neuroinflammation by cinnamon and its main components. Food Chem 2013; 138: 2275-2282. http://dx.doi.org/10.1016/j.foodchem.2012.12.020 DOI: https://doi.org/10.1016/j.foodchem.2012.12.020
Kim M, Koppula S, Jung S, Kim J, Lee H, Park Y, Lee K, Park T. Kang Olea europaea Linn (Oleaceae) Fruit Pulp Extract Exhibits Potent Antioxidant Activity and Attenuates Neuroinflammatory Responses in Lipopolysaccharide-Stimulated Microglial Cells Tropical. J Pharmaceut Res 2013; 12 (3): 357-362. http://www.tjpr.org/vol12_no3/2013_12_3_ 13.php DOI: https://doi.org/10.4314/tjpr.v12i3.13
Crea R, Bilter C, Nolin L, Pontoniere P. Anti-inflammatory activity of hydroxytyrosol - Inhibition of cytokine production in a parkinson’s model system of neuroinflammation. Agro Food Industry Hi Tech 2012; 23(2): 26-29. http://www. teknoscienze.com/articles/agro-food-industry-hi-tech
Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med Cell Longev. 2012; 2012: 921941. doi: 10.1155/2012/921941. Epub 2012 Jul 3. http://www.ncbi.nlm.nih.gov/pubmed/22919443 DOI: https://doi.org/10.1155/2012/921941
Moon M, Kim H, Choi J, Oh H, Lee P, Ha S, et al. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation
and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun 2014; 449(1): 8-13. http://dx.doi.org/10.1016/j.bbrc.2014.04.121 DOI: https://doi.org/10.1016/j.bbrc.2014.04.121
Ha SK, Moon E, Kim SY. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 2010; 485(3): 143-7. http://dx.doi.org/10.1016/j.neulet.2010.08.064 DOI: https://doi.org/10.1016/j.neulet.2010.08.064
Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Walczak Y, et al. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 2010; 7: 3. http://dx.doi.org/10.1186/1742-2094-7-3 DOI: https://doi.org/10.1186/1742-2094-7-3
Zhu LH, Bi W, Qi RB, Wang HD, Lu DX. Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. Int J Neurosci 2011; 121(6): 329-36. http://dx.doi.org/10.3109/00207454.2011.569040 DOI: https://doi.org/10.3109/00207454.2011.569040
Abraham J, Johnson RW. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res 2009; 12(6): 445-53. http://dx.doi.org/10.1089/rej.2009.0888 DOI: https://doi.org/10.1089/rej.2009.0888
Bureau G, Longpré F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86(2): 403-10. http://dx.doi.org/10.1002/jnr.21503 DOI: https://doi.org/10.1002/jnr.21503
Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson's disease. Neurotox Res 2013; 23(2): 145-53. http://dx.doi.org/10.1007/s12640-012-9328-5 DOI: https://doi.org/10.1007/s12640-012-9328-5
Ahmad A, Ramasamy K, Jaafar S, Majeed A, Mani V. Total isoflavones from soybean and tempeh reversed scopolamine-induced amnesia, improved cholinergic activities and reduced neuroinflammation in brain. Food Chem Toxicol 2014; 65: 120-8. http://dx.doi.org/10.1016/j.fct.2013.12.025 DOI: https://doi.org/10.1016/j.fct.2013.12.025
Haque A, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O. Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 2006; 136(4): 1043-7. http://www.ncbi.nlm.nih.gov/pubmed/ 16549472 DOI: https://doi.org/10.1093/jn/136.4.1043
Anandhan A, Essa M, Manivasagam T. Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson's disease. Neurotox Res 2013; 23(2): 166-73. http://dx.doi.org/10.1007/s12640-012-9332-9 DOI: https://doi.org/10.1007/s12640-012-9332-9
Cartford M, Gemma C, Bickford PC. Eighteen-month-old Fischer 344 rats fed a spinach-enriched diet show improved delay classical eyeblink conditioning and reduced expression of tumor necrosis factor alpha (TNFalpha) and TNFbeta in the cerebellum. J Neurosci 2002; 22(14): 5813-6. http://www.ncbi.nlm.nih.gov/pubmed/12122042 DOI: https://doi.org/10.1523/JNEUROSCI.22-14-05813.2002
Nerurkar P, Johns L, Nuesa L, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation 2011; 8: 64. http://dx.doi.org/10.1186/1742-2094-8-64 DOI: https://doi.org/10.1186/1742-2094-8-64
Moon M, Choi J, Kim S, Oh M. Bombycis excrementum reduces amyloid-β oligomer-induced memory impairments, neurodegeneration, and neuroinflammation in mice. J Alzheimers Dis 2014; 41(2): 599-613. http://www.ncbi.nlm. nih.gov/pubmed/24898636 DOI: https://doi.org/10.3233/JAD-140270
Brahmachari S, Jana A, Pahan K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J Immunol 2009; 183(9): 5917-27. http://dx.doi.org/10.4049/jimmunol.0803336 DOI: https://doi.org/10.4049/jimmunol.0803336
Chen J, Liu K, Yang T, Hwang J, Chan Y, Lee I. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutr Neurosci 2012. http://dx.doi.org/10.1179/1476830512Y.0000000020 DOI: https://doi.org/10.1179/1476830512Y.0000000020
Willis L, Bielinski D, Fisher D, Matthan N, Joseph J. Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2. Inflammation 2010; 33(5): 325-33. doi: 10.1007/s10753-010-9189-0. http://www.ncbi.nlm.nih.gov/ pubmed/20213499 DOI: https://doi.org/10.1007/s10753-010-9189-0
Colín-González A, Ortiz-Plata A, Villeda-Hernández J, Barrera D, Molina-Jijón E, Pedraza-Chaverrí J, Maldonado P. Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats. Plant Foods Hum Nutr 2011; 66(4): 348-54. http://dx.doi.org/10.1007/s11130-011-0251-3 DOI: https://doi.org/10.1007/s11130-011-0251-3
Townsend B, Chen Y, Jeffery E, Johnson R. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior. Nutr Res 2014; 34(11): 990-9. http://dx.doi.org/10.1016/j.nutres.2014.10.001 DOI: https://doi.org/10.1016/j.nutres.2014.10.001
Giles G, Mahoney C, Brunyé T, Gardony A, Taylor H, Kanarek R. Differential cognitive effects of energy drink ingredients: caffeine, taurine, and glucose. Pharmacol Biochem Behav 2012; 102(4): 569-77. http://dx.doi.org/10.1016/j.pbb.2012.07.004 DOI: https://doi.org/10.1016/j.pbb.2012.07.004
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .