Polymers and the Water Crisis in Brazil: Opportunities for Technological and Environmental Development
DOI:
https://doi.org/10.6000/1929-5995.2022.11.01Keywords:
Membranes, water treatment, polymer surveys, climateAbstract
At a global level, climate changes have been responsible for alterations in rainfall regimes. Numerous impacts resulting from such complex dynamics negatively affect peoples and nations. Desertification, sandification, floods, and droughts are some evident examples of the transformation the world is undergoing. In Brazil, the past few years have been characterized by long periods of drought in some regions. As a result, there have been considerable drops in the levels of reservoirs that supply important urban and economic axes in the country. Implications on the national economy and entire production chains aggravate the current scenario, along with two long years of the Sars-Cov-2 pandemic period. From this perspective, the present work aims to address the pressing need to adopt technologies and techniques for collecting and treating rainwater. To this end, specialized databases were accessed in order to evaluate ongoing research on the use of polymeric materials to achieve that goal.
References
Sewell WH. Historical events as transformations of structures: Inventing revolution at the Bastille. Theory and Society 1996; 25(6): 841-881. https://doi.org/10.1007/BF00159818 DOI: https://doi.org/10.1007/BF00159818
Wagner-Pacifici R. What is an event? Chicago: University of Chicago Press 2017. https://doi.org/10.7208/chicago/9780226439815.001.0001 DOI: https://doi.org/10.7208/chicago/9780226439815.001.0001
Tavory I, Wagner-Pacifici R. Climate change as an event. Poetics 2021. https://doi.org/10.1016/j.poetic.2021.101600 DOI: https://doi.org/10.1016/j.poetic.2021.101600
Hase V, Mahl D, Schäfer M, Keller T. Climate change in news media across the globe: An automated analysis of issue attention and themes in climate change coverage in 10 countries (2006-2018). Global Environmental Change 2021; 70: 102353. https://doi.org/10.1016/j.gloenvcha.2021.102353 DOI: https://doi.org/10.1016/j.gloenvcha.2021.102353
Bezzola GR, Hegg C, Koschni A. The Floods of 2005 in Switzerland: Synthesis Report on the Event Analysis. Federal Department for the Environment, Transport, Energy and Communications DETEC, Berne 2008; p. 24.
Stoffel M, Huggel C. Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 2012; 36: 421-439. https://doi.org/10.1177/0309133312441010 DOI: https://doi.org/10.1177/0309133312441010
Borga M, Stoffel M, Marchi L, Marra F, Jakob M. Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J Hydrol 2014; 518: 194-205. https://doi.org/10.1016/j.jhydrol.2014.05.022 DOI: https://doi.org/10.1016/j.jhydrol.2014.05.022
Beniston M, Stoffel M. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 °C and decrease thereafter. Science of the Total Environment 2016; 571: 228-236. https://doi.org/10.1016/j.scitotenv.2016.07.146 DOI: https://doi.org/10.1016/j.scitotenv.2016.07.146
Marques R, Krüger R, Cunha S, Silveira A, Alves D, Rodrigues G, Peterson A, Jiménez-García D. Climate change impacts on Anopheles (K.) cruzii in urban areas of Atlantic Forest of Brazil: Challenges for malaria diseases Acta Tropica 2021; 224: 106123. https://doi.org/10.1016/j.actatropica.2021.106123 DOI: https://doi.org/10.1016/j.actatropica.2021.106123
Polli B, Cunha C, Almeida R, Gobbi M. Evaluation of the impacts caused by wind field and freshwater flow variations due to climate change on the circulation of the Paranaguá Estuarine Complex, Brazil. Regional Studies in Marine Science 2021; 47: 101933. https://doi.org/10.1016/j.rsma.2021.101933 DOI: https://doi.org/10.1016/j.rsma.2021.101933
Siqueira P, Oliveira P, Bressiani D, Meira A, Rodrigues D. Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin. Journal of Hydrology: Regional Studies 2021; 37: 100931. https://doi.org/10.1016/j.ejrh.2021.100931 DOI: https://doi.org/10.1016/j.ejrh.2021.100931
Margulis S, Dubeux CBS, Marcovitch J. The Economics of Climate Change in Brazil: Costs and Opportunities. FEA/USP, São Paulo 2011.
Elli E, Sentelhas P, Bender F. Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. Forest Ecology and Management 2020; 474: 118365. https://doi.org/10.1016/j.foreco.2020.118365 DOI: https://doi.org/10.1016/j.foreco.2020.118365
Zilli M, Scarabello M, Soterroni A, Valin H, Mosnier A, Leclère D, Havlik P, Kraxner F, Lopes M, Ramos F. The impact of climate change on Brazil's agriculture. Science of the Total Environment 2020; 740: 139384. https://doi.org/10.1016/j.scitotenv.2020.139384 DOI: https://doi.org/10.1016/j.scitotenv.2020.139384
Dryzek JS, Norgaard RB, Schlosberg D. The Oxford Handbook of Climate Change and Society. Oxford, Oxford University Press 2011. https://doi.org/10.1093/oxfordhb/9780199566600.001.0001 DOI: https://doi.org/10.1093/oxfordhb/9780199566600.001.0001
Klinenberg E, Araos M, Koslov L. Sociology and the climate crisis. Annual Review of Sociology 2020; 46: 649-669. https://doi.org/10.1146/annurev-soc-121919-054750 DOI: https://doi.org/10.1146/annurev-soc-121919-054750
Oliveira J, Pereda P. The impact of climate change on internal migration in Brazil. Journal of Environmental Economics and Management 2020; 103: 102340. https://doi.org/10.1016/j.jeem.2020.102340 DOI: https://doi.org/10.1016/j.jeem.2020.102340
Chou SC, Silva A, Lyra A, Mourão C, Dereczynski C, Rodrigues D, Campos D. Simulações em alta resolução das mudanças climáticas sobre a América do Sul [in portuguese]. In: Teixeira BS, Orsini JAM, Cruz MR, Eds., Modelagem Climática e Vulnerabilidades Setoriais à Mudança do Clima no Brasil. Ministério da Ciência, Tecnologia e Inovação 2016; chapter 2: pp. 49-90.
Assad ED, Oliveira AF, Nakai AM, Pavão E, Pellegrino G, Monteiro JE. Impactos e vulnerabilidades da agricultura brasileira às mudanças climáticas [in Portuguese]. In: Teixeira BS, Orsini JAM, Cruz MR, Eds., Modelagem Climática e Vulnerabilidades Setoriais à Mudança do Clima no Brasil. Ministério da Ciência, Tecnologia e Inovação, 2016a; chapter 4: pp. 127-187.
Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 2012; 38: 1829-1848. https://doi.org/10.1007/s00382-011-1155-5 DOI: https://doi.org/10.1007/s00382-011-1155-5
Bombardi RJ, Carvalho LMV. Ipcc global coupled model simulations of the south america monsoon system. Clim Dyn 2009; 33: 893-916. https://doi.org/10.1007/s00382-008-0488-1 DOI: https://doi.org/10.1007/s00382-008-0488-1
Lucas M, Kublik N, Rodrigues D, Meira Neto A, Almagro A, Melo D, Zipper S, Oliveira PTS. Significant baseflow reduction in the Sao Francisco River Basin. Water 2021; 13: 1-17. https://doi.org/10.3390/w13010002 DOI: https://doi.org/10.3390/w13010002
Frost & Sullivan. Water scarcity and need for circular eco-nomies drive the global polymeric membranes market 2021.
Maduell F, Rodas L, Broseta JJ, Gómez M, Montagud-Marrahi E, Guillén E, Hermida E, Xipell M, Arias-Guillén M, Vera M, Fontseré N, Rico N. Evaluation of the influence of the surface membrane and blood flow in medium «cut-off» (MCO) dialyzers, Nefrología (English Edition) 2019; 39(6): 623-628. https://doi.org/10.1016/j.nefroe.2019.11.001 DOI: https://doi.org/10.1016/j.nefroe.2019.11.001
Olczyk P, Malyszczak A, Kusztal M. Dialysis membranes: a 2018 update. Polymers in Medicine 2018; 48(1): 57-63. https://doi.org/10.17219/pim/102974 DOI: https://doi.org/10.17219/pim/102974
Kerr P, Huang L. Review: membranes for haemodialysis. Nephrology 2010; 15(4): 381-385. https://doi.org/10.1111/j.1440-1797.2010.01331.x DOI: https://doi.org/10.1111/j.1440-1797.2010.01331.x
Cheng J, Zhang Z, Shi W, Zhang R, Zhang B, Bao X, Guo Y, Cui F. A novel polyester composite nanofiltration membrane prepared by interfacial polymerization catalysed by 4-dimethylaminopyridine: Enhanced the water permeability and anti-fouling ability. Polymer 2018; 153: 24-32. https://doi.org/10.1016/j.polymer.2018.07.083 DOI: https://doi.org/10.1016/j.polymer.2018.07.083
Lalia B, Kochkodan V, Hashaikeh R, Hilal N. A review on membrane fabrication: structure, properties and performance relationship. Desalination 2013; 326: 77-95. https://doi.org/10.1016/j.desal.2013.06.016 DOI: https://doi.org/10.1016/j.desal.2013.06.016
Shannon M, Bohn P, Elimelech M, Georgiadis J, Mariñas B, Mayes A. Science and technology for water purification in the coming decades. Nature 2008; 452: 301-310. https://doi.org/10.1038/nature06599 DOI: https://doi.org/10.1038/nature06599
Martin A, Khan Z, Zaidi S, Boyce M. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination 2011; 281: 1-16. https://doi.org/10.1016/j.desal.2011.06.063 DOI: https://doi.org/10.1016/j.desal.2011.06.063
Shenvi SS, Isloor AM, Ismail AF. A review on RO membrane technology: developments and challenges. Desalination 2015; 368: 10-26. https://doi.org/10.1016/j.desal.2014.12.042 DOI: https://doi.org/10.1016/j.desal.2014.12.042
Mou P, Jons SD. Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 2016; 103: 417-456. https://doi.org/10.1016/j.polymer.2016.07.085 DOI: https://doi.org/10.1016/j.polymer.2016.07.085
Almasri DA, Rhadfi T, Atieh MA, Mckay G, Ahzi S. High Performance Hydroxyiron Modified Montmorillonite Nanoclay Adsorbent for Arsenite Removal 2017. https://doi.org/10.1016/j.cej.2017.10.031 DOI: https://doi.org/10.1016/j.cej.2017.10.031
Zhao S, Ba C, Yao Y, Zheng WJ. Economy, P. Wang, Removal of Antibiotics Using Polyethylenimine Cross-linked Nanofiltration Membranes: Relating Membrane Performance to Surface Charge Characteristics 2017. https://doi.org/10.1016/j.cej.2017.10.140 DOI: https://doi.org/10.1016/j.cej.2017.10.140
Kim S, Chu KH, Al-Hamadani YAJ, Chang MP, Min J, Kim DH, Miao Y, Heo J, Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J 2018; 896-914. https://doi.org/10.1016/j.cej.2017.11.044 DOI: https://doi.org/10.1016/j.cej.2017.11.044
Baruth E. Water treatment plant design. American Water Works Association and American Society of Civil Engineers. McGraw-Hill 1990.
Hoslett J, Massara T, Malamis S, Ahmad D, Boogaert I, Katsou E, Ahmad B, Ghazal H, Simons S, Wrobel L, Jouhara H. Surfacce water filtration using granular media and membranes: A review. Science of the Total Environment 2018; 639: 1268-1282. https://doi.org/10.1016/j.scitotenv.2018.05.247 DOI: https://doi.org/10.1016/j.scitotenv.2018.05.247
Soltanieh M, Gill WN. Review of reverse osmosis membranes and transport models. Chemical Engineering Communications 1981; 12: 279-363. https://doi.org/10.1080/00986448108910843 DOI: https://doi.org/10.1080/00986448108910843
He Y, Xu K, Feng X, Chen L, Jiang Z. A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. Journal of Membrane Science 2021; 637: 119644. https://doi.org/10.1016/j.memsci.2021.119644 DOI: https://doi.org/10.1016/j.memsci.2021.119644
Male U, Jo EJ, Ju YP, Huh DS. Surface functionalization of honeycomb-patterned porous poly(ε-caprolactone) films by interfacial polymerization of aniline Polymer 2016; 99: 623-632. https://doi.org/10.1016/j.polymer.2016.07.040 DOI: https://doi.org/10.1016/j.polymer.2016.07.040
Gohil J, Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and Desalination. Separation and Purification Technology 2017; 181: 159-182. https://doi.org/10.1016/j.seppur.2017.03.020 DOI: https://doi.org/10.1016/j.seppur.2017.03.020
Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffffe DL, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination 2015; 356: 226-254. https://doi.org/10.1016/j.desal.2014.10.043 DOI: https://doi.org/10.1016/j.desal.2014.10.043
Rieratorres M, Gutiérrezbouzán C, Crespi M. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 2010; 252: 53-59. https://doi.org/10.1016/j.desal.2009.11.002 DOI: https://doi.org/10.1016/j.desal.2009.11.002
Schaep J, Bruggen BVD, Uytterhoeven S, Croux R, Vandecasteele C, Wilms D, Houtte EV, Vanlerberghe F. Removal of hardness from groundwater by nanofiltration. Desalination 1998; 119: 295-301. https://doi.org/10.1016/S0011-9164(98)00172-6 DOI: https://doi.org/10.1016/S0011-9164(98)00172-6
Plakas KV, Karabelas AJ. Removal of pesticides from water by NF and RO membranes - a review. Desalination 2012; 287: 255-265. https://doi.org/10.1016/j.desal.2011.08.003 DOI: https://doi.org/10.1016/j.desal.2011.08.003
He Y, Jiang Z-W. Technology review: Treating oilfield wastewater. Filtr Sep 2008; 45: 14-16. https://doi.org/10.1016/S0015-1882(08)70174-5 DOI: https://doi.org/10.1016/S0015-1882(08)70174-5
Lv J, Zhang G, Zhang H, Zhao C, Yang F. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci 2018; 440: 1091-1100. https://doi.org/10.1016/j.apsusc.2018.01.256 DOI: https://doi.org/10.1016/j.apsusc.2018.01.256
Li H, Cao Y, Qin J, Jie X, Wang T, Liu J, Yuan Q. Development and characterization of anti-fouling cellulose hollow fifiber UF membranes for oil–water separation. J Membr Sci 2006; 279: 328-335. DOI: https://doi.org/10.1016/j.memsci.2005.12.025
Hussain A, Al-Yaari M. Development of Polymeric Membranes for Oil/Water Separation. Membranes 2021; 11: 42. https://doi.org/10.3390/membranes11010042 DOI: https://doi.org/10.3390/membranes11010042
Mousa HM, Alfadhel H, Abouel Nasr E. Engineering and Characterization of Antibacterial Coaxial Nanofiber Membranes for Oil/Water Separation. Polymers 2020; 12: 2597. https://doi.org/10.3390/polym12112597 DOI: https://doi.org/10.3390/polym12112597
Sheikh M, Pazirofteh M, Dehghani M, Asghari M, Rezakazemi M, Valderrama C, Cortina J-L. Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal 2020. https://doi.org/10.1016/j.cej.2019.123475 DOI: https://doi.org/10.1016/j.cej.2019.123475
Gao X, Li P, Gu Z, Xiao Q, Yu S, Hou L. Preparation of poly(piperazine-amide) nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization: Performance and mechanism. Journal of Membrane Science 2021; 638: 119711. https://doi.org/10.1016/j.memsci.2021.119711 DOI: https://doi.org/10.1016/j.memsci.2021.119711
Lederle F, Härter C, Beuermann S. Inducing beta phase crystallinity of PVDF homopolymer, blends and block copolymers by anti-solvent crystallization. Journal of Fluorine Chemistry 2020; 234: 109522. https://doi.org/10.1016/j.jfluchem.2020.109522 DOI: https://doi.org/10.1016/j.jfluchem.2020.109522
Cao P, Shi J, Zhang J, Wang X, Jung J, Wang Z, Cui Z, Lee Y. Piezoelectric PVDF membranes for use in anaerobic membrane bioreactor (AnMBR) and their antifouling performance. Journal of Membrane Science 2020; 603: 118037. https://doi.org/10.1016/j.memsci.2020.118037 DOI: https://doi.org/10.1016/j.memsci.2020.118037
Corrêa H, Corrêa D. Polymer applications for medical care in the Covid-19 pandemic crisis: We will still speak ill of these materials? Frontiers in Materials 2020’ 7(283). https://doi.org/10.3389/fmats.2020.00283 DOI: https://doi.org/10.3389/fmats.2020.00283
Li L, Zhang S, Zhang X. Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3′,5,5′-biphenyl tetraacyl chloride and piperazine. Journal of Membrane Science 2009; 335(1-2): 133-139. https://doi.org/10.1016/j.memsci.2009.03.011 DOI: https://doi.org/10.1016/j.memsci.2009.03.011
Liu M, Su S, Zhou Y, Gao C. Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salts aqueous: preparation and performance. J Membr Sci 2008; 310: 289. https://doi.org/10.1016/j.memsci.2007.11.002 DOI: https://doi.org/10.1016/j.memsci.2007.11.002
Ghosh A, Jeong B, Huang X, Hoek E. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J Membr Sci 2008; 311: 34. https://doi.org/10.1016/j.memsci.2007.11.038 DOI: https://doi.org/10.1016/j.memsci.2007.11.038
Mehta R, Brahmbhatt H, Bhojani G, Mukherjee M, Bhattacharya A. Poly(piperizinamide) with copper ion composite membranes: Application for mitigation of Hexaconazole from water and combat microbial contamination. Journal of Hazardous Materials 2019; 376: 102-111. https://doi.org/10.1016/j.jhazmat.2019.05.026 DOI: https://doi.org/10.1016/j.jhazmat.2019.05.026
Regev C, Belfer S, Holemberg M, Fainstein R, Parola A, Kasher R. Fabrication of poly(ethylene glycol) particles with a micro-spherical morphology on polymeric fibers and its application in high flux water filtration. Separation and Purification Technology 2019; 210: 729-736. https://doi.org/10.1016/j.seppur.2018.08.068 DOI: https://doi.org/10.1016/j.seppur.2018.08.068
Asatekin A, Kang S, Elimelech M, Mayes AM. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 2007; 298: 136-146. https://doi.org/10.1016/j.memsci.2007.04.011 DOI: https://doi.org/10.1016/j.memsci.2007.04.011
La YH, McCloskey BD, Sooriyakumaran R, Vora A, Freeman B, Nassar M, Hedrick J, Nelson A, Allen R. Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity. J Membr Sci 2011; 372(1-2): 285-291. https://doi.org/10.1016/j.memsci.2011.02.005 DOI: https://doi.org/10.1016/j.memsci.2011.02.005
Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A. Advances in biopolymer-based membrane preparation and applications. J Membr Sci 2018; 564: 562-586. https://doi.org/10.1016/j.memsci.2018.07.059 DOI: https://doi.org/10.1016/j.memsci.2018.07.059
Kim D, Kim I, Kwon Y, Myung S. Novel bio-based polymer membranes fabricated from isosorbide incorporated poly(arylene ether)s for water treatment. European Polymer Journal 2020; 136: 109931. https://doi.org/10.1016/j.eurpolymj.2020.109931 DOI: https://doi.org/10.1016/j.eurpolymj.2020.109931
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .