The Potential Use of Polymeric Nanomaterials Against the Spread of the SARS-Cov-2 and its Variants: A Necessary Briefing

Authors

  • Harrison Lourenço Corrêa Graduate Program in Manufacturing Engineering, Lab for Circular Economy and Sustainability Studies (LaCESS), Technology Sector, Department of Mechanical Engineering, Federal University of Paraná, 81530-000 Curitiba, PR, Brazil https://orcid.org/0000-0001-5700-0579

DOI:

https://doi.org/10.6000/1929-5995.2023.12.17

Keywords:

COVID-19, SARS-CoV-2, Nanotechology, Virus, Nanopolymers

Abstract

Regarding its evolutionary scale, mankind has made important achievements in a short period of time. The last 50 years have been fundamental for the development of technologies that currently allow human beings to make safe journeys in the orbit of the planet, study and accurately analyze the universe, build smart cities, propose more sustainable production processes, etc. The technological leap of the last decades has influenced practically all sectors, from engineering to medicine. There are many factors that allowed for technological evolution, and one of them refers to the development of new materials. Herein, polymers stand out. The versatility of these materials reinforced their relevance during the SARS-CoV-2 period. In the period when many medical and hospital supplies were exhausted, polymers were useful for manufacturing items such as face shields, general purpose masks, and swabs, helping to counter the spread of the virus. Two years after the pandemic peak, the challenge is to fight the viral variants and make the methods of diagnosis and treatment more effective. In this regard, nanotechnology and nanoscience seem to be promising for this purpose. Through a review study, the present work aims to identify technologies already available or under development that allow for the use of polymeric nanomaterials against the spread of the new coronavirus and its variants.

References

Menezes F, Figer V, Jardim F, Medeiros P. A near real time economic activity tracker for the Brazilian economy during the Covid-19 pandemic. Economic Modelling 2022; 112: 105851. https://doi.org/10.1016/j.econmod.2022.105851 DOI: https://doi.org/10.1016/j.econmod.2022.105851

Kumar S. Chapter 3 - the global impact of pandemics on world economy and public health response. Computational approaches for novel therapeutic and diagnostic designing to mitigate Sars-Cov-2 infection. Revolutionary Strategies to Combat Pandemics 2022; 43-48. https://doi.org/10.1016/B978-0-323-91172-6.00022-4 DOI: https://doi.org/10.1016/B978-0-323-91172-6.00022-4

Chidume C, Oko-Otu C, Ato G. State fragility and Covid-19 pandemic: Implications on the political economy of Nigeria. Social Sciences & Humanities Open 2021; 3(1): 100127. https://doi.org/10.1016/j.ssaho.2021.100127 DOI: https://doi.org/10.1016/j.ssaho.2021.100127

Ho C, Pham T, Nguyen H, Vo D. Does the Covid-19 pandemic matter for market risks across sectors in Vietnam? Heliyon 2021; 7(12): e08453. https://doi.org/10.1016/j.heliyon.2021.e08453 DOI: https://doi.org/10.1016/j.heliyon.2021.e08453

Zhang Q, Tong Q. The economic impacts of traffic consumption during the Covid-19 pandemic in China: A CGE analysis. Transport Policy 2021; 114: 330-337. https://doi.org/10.1016/j.tranpol.2021.10.018 DOI: https://doi.org/10.1016/j.tranpol.2021.10.018

Tan K, Yang Y, Li R. Catching a ride in the peer-to-peer economy: Tourists’ acceptance and use of ridescharing services before and during the Covid-19 pandemic. Journal of Business Research 2022; 151: 504-518. https://doi.org/10.1016/j.jbusres.2022.05.069 DOI: https://doi.org/10.1016/j.jbusres.2022.05.069

Tabak B, Silva IB, Silva T. Analysis of connectivity between the world´s banking markets: The Covid-19 global pandemic shock. The Quarterly Review of Economics and Finance 2022; 84: 324-336. https://doi.org/10.1016/j.qref.2022.03.002 DOI: https://doi.org/10.1016/j.qref.2022.03.002

Bischi G, Grassetti F, Carrera E. On the economy growth equilibria during the Covid-19 pandemic. Communications in Nonlinear Science and Numerical Simulation 2022; 112: 106573. https://doi.org/10.1016/j.cnsns.2022.106573 DOI: https://doi.org/10.1016/j.cnsns.2022.106573

Céspedes L, Chang R, Velasco A. The macroeconomics of a pandemic: A minimalist framework. Journal of International Money and Finance 2022; 127: 102674. https://doi.org/10.1016/j.jimonfin.2022.102674 DOI: https://doi.org/10.1016/j.jimonfin.2022.102674

Almendro-Vásquez P, Chivite-Lacaba M, Ultrero-Rico A, González-Cuadrado C, Laguna-Goya R, Moreno-Batanero M, Sánchez-Paz L, Luczkowiak J, Labiod N, Folgueira M, Delgado R, Paz-Artal E. Cellular and humoral immune responses and breakthrough infections after three Sars-Cov-2 mRNA vaccine doses. Frontiers in Immunology 2022. https://doi.org/10.3389/fimmu.2022.981350 DOI: https://doi.org/10.3389/fimmu.2022.981350

Liang Y, Shi K, Tang J, Xu J. Pandemic and containment policies in open economy. Journal of International Money and Finance 2022; 125: 102637. https://doi.org/10.1016/j.jimonfin.2022.102637 DOI: https://doi.org/10.1016/j.jimonfin.2022.102637

Zu J, Shen M, Fairley C, Li M, Li G, Rong L, Xiao Y, Zhuang G, Zhang L, Li Y. Investigating the relationship between reopening the economy and implementing control measures during the Covid-19 pandemic. Public Health 2021; 200: 15-21. https://doi.org/10.1016/j.puhe.2021.09.005 DOI: https://doi.org/10.1016/j.puhe.2021.09.005

Corrêa HL, Corrêa DG. Polymer applications for medical care in the Covid-19 pandemic crisis: Will we still speak ill of these materials? Frontiers in Materials 2020; 7: 283. https://doi.org/10.3389/fmats.2020.00283 DOI: https://doi.org/10.3389/fmats.2020.00283

(a) WHO, World Health Organization. Advice for the public: Coronavirus disease (COVID-19). Available: https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public. Access July 22.

Mahapatra A, Bhowmik P, Banerjee A, Das A, Ojha D, Chattopadhyay D. Chapter 3 - Ethnomedicinal wisdom: An approach for antiviral drug development. New Look to Phytomedicine 2019; 35-61. https://doi.org/10.1016/B978-0-12-814619-4.00003-3 DOI: https://doi.org/10.1016/B978-0-12-814619-4.00003-3

(b) WHO, World Health Organization. Tracking SARS-CoV-2 variants. Available: https: //www.who.int/activities/tracking-SARS-CoV-2-variants. Access August 2nd, 2022.

CDC, Centers for Disease Control and Prevention. What you need to know about variants. Available: https: //www.cdc.gov/coronavirus/2019-ncov/variants/about-variants.html. Access August 2nd, 2022.

Hewins B, Rahman M, Bermejo-Martin J, Kelvin A, Richardson C, Rubino S, Kumar A, Ndishimye P, Ostadgavahi A, Mahmud-Al-Rafat A, Kelvin D. Alpha, Beta, Delta, Omicron and SARS-CoV-2 breakthrough cases: Defining immunological mechanisms for vaccine waning and vaccine-variant mismatch. Frontiers in Virology 2022; 2: 849936. https://doi.org/10.3389/fviro.2022.849936 DOI: https://doi.org/10.3389/fviro.2022.849936

Liu M, Li Y. Advances in COVID-19 vaccines and new coronavirus variants. Frontiers in Medicine 2022; 9: 888631. https://doi.org/10.3389/fmed.2022.888631 DOI: https://doi.org/10.3389/fmed.2022.888631

WHO, World Health Organization. Director-General´s opening remarks at the media briefing on COVID-19. Available: https: //www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

Karkare, Manasi. Nanotechnology, Fundamentals and applications. I.K. International Publishing House 2008.

Straten K, Gils M, Taeye S, Bree G. Optimization of anti-Sars-CoV-2 neutralizing antibody therapies: Roadmap to improve clinical effectiveness and implementation. Frontiers in Medical Technology 2022; 4: 867982. https://doi.org/10.3389/fmedt.2022.867982 DOI: https://doi.org/10.3389/fmedt.2022.867982

(c) WHO, World Health Organization. COVID-19. Research-SARS-CoV-2-variants. Available in: https: //www.who.int/activities/tracking-SARS-CoV-2-variants-update-on-covid-19—11-agost-2022.

Clercq E. Antiviral drug discovery and development: Where chemistry meets with biomedicine. Antiviral Research 2005; 67(2): 56-75. https://doi.org/10.1016/j.antiviral.2005.05.001 DOI: https://doi.org/10.1016/j.antiviral.2005.05.001

Clercq E. An Odyssey in antiviral drug development - 50 years at the Rega Institute: 1964-2014. Acta Pharmaceutica Sinica B 2015; 5(6): 520-543. https://doi.org/10.1016/j.apsb.2015.09.001 DOI: https://doi.org/10.1016/j.apsb.2015.09.001

Brinton M, Plemper R. Editorial overview: Antiviral Strategies-Antiviral drug development for single-stranded RNA viruses. Current Opinion in Virology 2019; 35: iii-v. https://doi.org/10.1016/j.coviro.2019.05.011 DOI: https://doi.org/10.1016/j.coviro.2019.05.011

Corrêa HL, Figueiredo MA, Corrêa DG. The Covid-19 pandemic in Brazil: A health and potential waste management crisis. Global Journal of Science and Engineering 2020; 5: 11-13. https://doi.org/10.37516/global.j.sci.eng.2021.0142 DOI: https://doi.org/10.37516/global.j.sci.eng.2021.0142

Khan M, Svedberg A, Singh A, Ansari M, Karim Z. Use of nanostructured polymer in the delivery of drugs for cancer therapy. Micro & Nano Technologies Series, Elsevier 2019. https://doi.org/10.1016/B978-0-12-816771-7.00013-2 DOI: https://doi.org/10.1016/B978-0-12-816771-7.00013-2

Larena A, Tur A, Baranauskas V. Classification of nanopolymers. Journal of Physics: Conference Series. IOP Publishing 2008. https://doi.org/10.1088/1742-6596/100/1/012023 DOI: https://doi.org/10.1088/1742-6596/100/1/012023

Shiri S, Abbasi N, Alizadeh K, Karimi E. Novel and green synthesis of a nanopolymer and its use as a drug system of silibinin and silymarin extracts in the olfactory ensheating cells of rats in normal and high-glucose conditions. RSC Advances 2019; 9: 38912. https://doi.org/10.1039/C9RA05608D DOI: https://doi.org/10.1039/C9RA05608D

Piraux L, Dubois S, Demoustier-Champagne, S. Template synthesis of nanoscale materials using the membrane porosity. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1997; 131: 357-363. https://doi.org/10.1016/S0168-583X(97)00363-7 DOI: https://doi.org/10.1016/S0168-583X(97)00363-7

Liu G. Functional crosslinked nanostructures from block copolymers. Materials Science and Engineering: C 1999; 10: 159-164. https://doi.org/10.1016/S0928-4931(99)00114-9 DOI: https://doi.org/10.1016/S0928-4931(99)00114-9

Miller S, Ding J, Gin D. Nanostructured materials based on polymerizable amphiphiles. Current Opinion in Colloid & Interface Science 1999; 4(5): 338-347. https://doi.org/10.1016/S1359-0294(99)90018-3 DOI: https://doi.org/10.1016/S1359-0294(99)90018-3

Bolken T, Hruby D. Discovery and development of antiviral drugs for biodefense: Experience of a small biotechnology company. Antiviral Research 2008; 77(1): 1-5. https://doi.org/10.1016/j.antiviral.2007.07.003 DOI: https://doi.org/10.1016/j.antiviral.2007.07.003

Bryan-Marrugo O, Ramos-Jiménez J, Barrera-Saldaña H, Rojas-Martínez A, Vidaltamayo R, Rivas-Estilla. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Medicina Universitária 2015; 17(68): 165-174. https://doi.org/10.1016/j.rmu.2015.05.003 DOI: https://doi.org/10.1016/j.rmu.2015.05.003

Adamson C, Chibale K, Goss R, Jaspars M, Newman D, Dorrington R. Antiviral drug discovery: Preparing for the next pandemic. Chemical Society Reviews 2021; 50: 3647. https://doi.org/10.1039/D0CS01118E DOI: https://doi.org/10.1039/D0CS01118E

Howes L. Why are antivirals so hard to develop? Chemical and Engineering News 2021. Access: July 29th, 2022. Available: https: //cen.acs.org/pharmaceuticals/drug-discovery/antiviral-drug-development-covid-19/99/i19.

Zhou J, Krishnan N, Jiang Y, Fang R, Zhang L. Nanotech-nology for virus treatment. Nano Today 2021; 36: 101031. https://doi.org/10.1016/j.nantod.2020.101031 DOI: https://doi.org/10.1016/j.nantod.2020.101031

Ricci S, Francisci D, Longo V, Del Favero A. Central nervous system side effects of antiviral drugs. International Journal of Clinical Pharmacology 1988; 26(8): 400-408.

Clark S, Creighton S, Portmann B, Taylor C, Wendon J, Cramp M. Acute liver failure associated with antiretroviral treatment for HIV: A report of six cases. Journal of Hepatology 2002; 36(2): 295-301. https://doi.org/10.1016/S0168-8278(01)00291-4 DOI: https://doi.org/10.1016/S0168-8278(01)00291-4

Fontana R. Side effects of long-term oral antiviral therapy for hepatitis B. Hepatology 2009; 49(5): S185-S195. https://doi.org/10.1002/hep.22885 DOI: https://doi.org/10.1002/hep.22885

Vcev A. Management of side effects during antiviral therapy. Acta Medica Croatia 2009; 63(5): 463-467.

Singh L, Kruger H, Maguire G, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Therapeutic Advances in Infectious Disease 2017; 4(4): 105-131. https://doi.org/10.1177/2049936117713593 DOI: https://doi.org/10.1177/2049936117713593

Malhotra P, Malhotra V, Gupta U, Gill PS, Pushkar Y, Sanwariya Y. Side effects of directly acting antivirals for hepatitis C. Japanese Journal of Gastroenterology and Hepatology 2021; 6(5): 1-5. https://doi.org/10.15406/ghoa.2021.12.00447 DOI: https://doi.org/10.15406/ghoa.2021.12.00447

Strasfeld L, Chou S. Antiviral drug resistance: Mechanisms and clinical implications. Infectious Disease Clinics of North America 2010; 24(2): 413-437. https://doi.org/10.1016/j.idc.2010.01.001 DOI: https://doi.org/10.1016/j.idc.2010.01.001

Li J, Li W, Cheng J, Huang M, Wu Z, Jiang C, Li H, Chen J, Lv X, Dong B, Jiang J, Peng Z. A simple but accurate method for evaluating drug-resistance in infectious HCVcc system. Biomed Research International 2017; 1236801. https://doi.org/10.1155/2017/1236801 DOI: https://doi.org/10.1155/2017/1236801

Kumar M, Kuroda K, Dhangar K, Mazumber P, Sonne C, Rinklebe J, Kitajima M. Potential emergency of antiviral-resistance pandemic viruses via environmental drug exposure of animal reservoirs. Environmental Science & Technology 2021; 54(14): 8503-8505. https://doi.org/10.1021/acs.est.0c03105 DOI: https://doi.org/10.1021/acs.est.0c03105

Patra J, Das G, Fraceto L, Campos E, Rodriguez-Torres M, Acosta-Torres L, Diaz-Torres L, Grillo R, Swamy M, Sharma S, Habtermariam S, Shin H. Nano based drug delivery systems: Recent developments and future prospects. Nanobiotechnology 2018; 16(1): 71. https://doi.org/10.1186/s12951-018-0392-8 DOI: https://doi.org/10.1186/s12951-018-0392-8

Rai M, Bonde S, Yadav A, Bhowmik A, Rathod S, Ingle P, Gade A. Nanotechnology as a shield against Covid-19: Cur-rent advancement and limitations. Viruses 2021; 13: 1224. https://doi.org/10.3390/v13071224 DOI: https://doi.org/10.3390/v13071224

De Villiers M, Aramwit P, Kwon G. Nanotechnology in drug delivery. New York: Springer 2008. https://doi.org/10.1007/978-0-387-77667-5 DOI: https://doi.org/10.1007/978-0-387-77667-5

Saini V, Zharov V, Brazel C, Nikles D, Johnson D, Everts M. Combination of viral biology and nanotechnology: New applications in nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine 2006; 2: 200-206. https://doi.org/10.1016/j.nano.2006.07.002 DOI: https://doi.org/10.1016/j.nano.2006.07.002

Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260-1263. https://doi.org/10.1126/science.abb2507 DOI: https://doi.org/10.1126/science.abb2507

Douglas T, Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nature 1998; 393: 152-155. https://doi.org/10.1038/30211 DOI: https://doi.org/10.1038/30211

Falkner J, Turner M, Bosworth J, Trentler T, Jonhson J, Lin T, Colvin V. Virus crystals as nanocomposite scaffolds. Journal of the American Chemical Society 2005; 127(15): 5274-5275. https://doi.org/10.1021/ja044496m DOI: https://doi.org/10.1021/ja044496m

Thangavelu R, Ganapathy R, Ramasamy P, Krishnan K. Fabrication of virus metal hybrid nanomaterials: An ideal reference for bio semiconductor. Arabian Journal of Chemistry 2020; 13: 2750-2765. https://doi.org/10.1016/j.arabjc.2018.07.006 DOI: https://doi.org/10.1016/j.arabjc.2018.07.006

Chiu W, Burnett R, Garcea R. Structural biology of viruses. New York, Oxford University Press 1997.

Ahmed M, Afifi M, Uskokovic V. Protecting healthcare workers during Covid-19 pandemic with nanotechnology: A protocol for a new device from Egypt. J Infect Public Health 2020; 13: 1243-1246. https://doi.org/10.1016/j.jiph.2020.07.015 DOI: https://doi.org/10.1016/j.jiph.2020.07.015

Cheng J, Huang Q, Huang Y, Luo W, Hu Q, Xiao C. Study on a novel PTFE membrane with regular geometric pore structures fabricated by near-field electrospinning and its applications. Journal of Membrane Science 2020; 603: 118014. https://doi.org/10.1016/j.memsci.2020.118014 DOI: https://doi.org/10.1016/j.memsci.2020.118014

Campos E, Pereira A, Oliveira J, Carvalho L, Guilger-Casagrande M, Lima R, Fraceto F. How can nanotechnology help to combat Covid-19? Opportunities and urgent need. Journal of Nanobiotechnology 2020; 18: 125. https://doi.org/10.1186/s12951-020-00685-4 DOI: https://doi.org/10.1186/s12951-020-00685-4

Peplow M. Nanotechnology offers alternative ways to fight Covid-19 pandemic with antivirals. Nature Biotechnology 2021; 39: 1169-1175. https://doi.org/10.1038/s41587-021-01085-1 DOI: https://doi.org/10.1038/s41587-021-01085-1

Rashidzadeh H, Danafar H, Rahimi H, Mozafari F, Salehiabar M, Amin Rahmati M, Rahamooz-Haghighi S, Mousazadeh N, Mohammadi A, Nuri Y, Ramazani A, Huseynova I, Khalilov R, Davaran S, Webster T, Kavetskyy T, Eftekhari A, Nosrati H, Mirsaeidi M. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives. Nanomedicine 2021. https://doi.org/10.2217/nnm-2020-0441 DOI: https://doi.org/10.2217/nnm-2020-0441

Yang D. Application of nanotechnology in the COVID-19 pandemic. International Journal of Nanomedicine 2021; 16: 623-649. https://doi.org/10.2147/IJN.S296383 DOI: https://doi.org/10.2147/IJN.S296383

Al-Bari M. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70(6): 1608-21. https://doi.org/10.1093/jac/dkv018 DOI: https://doi.org/10.1093/jac/dkv018

Thomas E, Ghany M, Liang T. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 2012; 23: 1-12. https://doi.org/10.3851/IMP2125 DOI: https://doi.org/10.3851/IMP2125

Udugama B, Kadhiresan P, Kozlowski H, Malekjahani A, Osborne M, Li V. Diagnosing COVID-19: The disease and tools for detection. ACS Nano 2020; 14: 3822-35. https://doi.org/10.1021/acsnano.0c02624 DOI: https://doi.org/10.1021/acsnano.0c02624

Zhu N, Zhang D, Wang W, Xingwang L, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine 2020; 382: 727-733. https://doi.org/10.1056/NEJMoa2001017 DOI: https://doi.org/10.1056/NEJMoa2001017

Khanal M, Vausselin T, Barras A, Bande O, Turcheniuk K, Benazza M, Zaitsev V, Teodorescu C, Boukherroub R, Siriwardena A, Dubuisson J, Szunerits S. Phenylboronic-acid-modified nanoparticles: Potential antiviral therapeutics. Applied Materials and Interfaces 2013; 5(23): 12488-12498. https://doi.org/10.1021/am403770q DOI: https://doi.org/10.1021/am403770q

Lin L, Huang C, Yao B, Lin J, Agrawal A, Algaissi A, Peng B, Liu Y, Huang P, Juang R, Chang Y, Tseng C, Chen H, Hu C. Viromimetic STING against-loaded hollow polymeric nanoparticles for safe and effective vaccination against middle east respiratory syndrome coronavirus. Advanced Functional Materials 2019; 29(28): 1807616. https://doi.org/10.1002/adfm.201807616 DOI: https://doi.org/10.1002/adfm.201807616

Soares D, Poletto F, Eberhardt M, Domingues S, Souza F, Tebaldi M. Polymer-hybrid nanosystems for antiviral applications: Current advances. Biomedicine and Pharmacotherapy 2022; 146: 112249. https://doi.org/10.1016/j.biopha.2021.112249 DOI: https://doi.org/10.1016/j.biopha.2021.112249

Jeremiah S, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications 2020; 533(1): 195-200. https://doi.org/10.1016/j.bbrc.2020.09.018 DOI: https://doi.org/10.1016/j.bbrc.2020.09.018

Mahltig B, Reibold M, Gutmann E, Textor T, Gutmann J, Haufe H, Haase H. Preparation of silver nanoparticles suitable for textile finishing processes to produce textiles with strong antibacterial properties against different bacteria types. Zeitschrift für Naturforschung B 2014.

Zheng Y, Cloutier P, Hunting D, Sanche, L. Radiosensitization by gold nanoparticles: Comparison of DNA damage induced by low and high-energy electrons. J Biomed Nanotechnology 2008; 4: 469-475. https://doi.org/10.1166/jbn.2008.3282 DOI: https://doi.org/10.1166/jbn.2008.3282

Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A, Garofalo R. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses 2019; 11. https://doi.org/10.3390/v11080732 DOI: https://doi.org/10.3390/v11080732

Elechiguerra J, Burt J, Morones J, Camacho-Bragado A, Gao X, Lara H, Yacaman M. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 2005; 3: 6. https://doi.org/10.1186/1477-3155-3-6 DOI: https://doi.org/10.1186/1477-3155-3-6

Khalvati B, Sheikhsaran F, Sharifzadeh S, Kalantari T, Behzad A, Jamshidzadeh A. Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-based nano-particles. Artif Cells Nanomed Biotechnology 2017; 45: 1036-44. https://doi.org/10.1080/21691401.2016.1202256 DOI: https://doi.org/10.1080/21691401.2016.1202256

Gao H, Xiong Y, Zhang S, Yang Z, Cao S, Jiang X. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm 2014; 11: 1042-52. https://doi.org/10.1021/mp400751g DOI: https://doi.org/10.1021/mp400751g

Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev 2020; 53: 38-42. https://doi.org/10.1016/j.cytogfr.2020.04.002 DOI: https://doi.org/10.1016/j.cytogfr.2020.04.002

Jundi A, Mayor M, Folgado E, Gomri C, Benkhaled B, Chaix A, Verdie P, Nottelet B, Semsarilar M. Peptide-guided self-assembly for polyethylene glycol-b-poly(ɛ-caprolactone-g-peptide) block copolymers. European Polymer Journal 2022; 176(5): 111386. https://doi.org/10.1016/j.eurpolymj.2022.111386 DOI: https://doi.org/10.1016/j.eurpolymj.2022.111386

Ali I, Kareem F, Rahim S, Perveen S, Ahmed S, Shah MR, Malik MI. Architecture based selectivity of Amphiphilic block copolymers of poly (ethylene oxide) and poly (ε-caprolactone) for drug delivery. Reactive and Functional Polymers 2020; 150: 104553. https://doi.org/10.1016/j.reactfunctpolym.2020.104553 DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104553

Celentano W, Ordanini S, Bruni R, Marocco L, Medaglia P, Rossi A, Buzzaccaro S, Cellesi F. Complex poly(ɛ-caprolactone)/poly(ethylene glycol) copolymer architectures and their effects on nanoparticles self-assembly and drug nanoencapsulation. European Polymer Journal 2021; 144(5): 110226. https://doi.org/10.1016/j.eurpolymj.2020.110226 DOI: https://doi.org/10.1016/j.eurpolymj.2020.110226

Boussif O, Lezoualc´h F, Zanta M, Mergny M, Scherman D, Demeneix B, Behr J. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 1995; 92(16): 7297-7301. https://doi.org/10.1073/pnas.92.16.7297 DOI: https://doi.org/10.1073/pnas.92.16.7297

Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X. Polyethilenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Applied Materials and Interfaces 2015; 7(4): 2607-2615. https://doi.org/10.1021/am507601m DOI: https://doi.org/10.1021/am507601m

Çetin K, Denizli A. Polyethylenimine-functionalized microcryogels for controlled release of diclofenec sodium. Reactive and Functional Polymers 2022; 170: 105125. https://doi.org/10.1016/j.reactfunctpolym.2021.105125 DOI: https://doi.org/10.1016/j.reactfunctpolym.2021.105125

Sabin J, Alatorre-Meda M, Miñones J, Domínguez-Arca V, Prieto G. New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids and Surfaces B: Biointerfaces 2022; 210: 112219. https://doi.org/10.1016/j.colsurfb.2021.112219 DOI: https://doi.org/10.1016/j.colsurfb.2021.112219

Ghriga M, Grassi B, Gareche M, Khodja M. Lebouachera, S, Andreu, N, Drouiche, N. Review of recent advances in polyethyleneimine crosslinked polymer gels used for conformance control applications. Polymer Bulletin 2019; 76(1). https://doi.org/10.1007/s00289-019-02687-1 DOI: https://doi.org/10.1007/s00289-019-02687-1

Dai C, Huang W, Yang J, Hussein W, Wang J, Khalil Z, Capon R, Toth I, Stephenson R. Polyethylenimine quantity and molecular weight influence its adjuvating properties in liposomal peptide vaccines. Bioorganic & Medicinal Chemistry Letters 2021; 40: 127920. https://doi.org/10.1016/j.bmcl.2021.127920 DOI: https://doi.org/10.1016/j.bmcl.2021.127920

Woon W, Leung F, Sun Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols. Separ Purif Technology 2020; 116886. https://doi.org/10.1016/j.seppur.2020.116886 DOI: https://doi.org/10.1016/j.seppur.2020.116886

Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking and infection mechanisms. Nanomedicine and Nanobiotechnology 2021. https://doi.org/10.1002/wnan.1700 DOI: https://doi.org/10.1002/wnan.1700

Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, Chenab K, Baradaran B, Hashemzaei M, Radinekiyan F, Mokhtarzadeh A, Maleki A. Dengue virus: A review on advances in detection and trends - from conventional methods to novel biosensors. Microchim Acta 2019; 186. https://doi.org/10.1007/s00604-019-3420-y DOI: https://doi.org/10.1007/s00604-019-3420-y

Nagraik R, Shaarma A, Kumar D, Mukherjee S, Sen F, Kumar A. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini review. Sensors International 2021; 2: 100089. https://doi.org/10.1016/j.sintl.2021.100089 DOI: https://doi.org/10.1016/j.sintl.2021.100089

Dyckman L, Khlebstov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews 2012; 41: 2256-82. https://doi.org/10.1039/C1CS15166E DOI: https://doi.org/10.1039/C1CS15166E

Draz M, Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics 2018; 8(7): 1985-2017. https://doi.org/10.7150/thno.23856 DOI: https://doi.org/10.7150/thno.23856

Abraham A, Kannangai R, Sridharan G. Nanotechnology: A new frontier in virus detection in clinial practice. Indian Journal of Medical Microbiology 2008; 26(4): 297-301. https://doi.org/10.1016/S0255-0857(21)01804-1 DOI: https://doi.org/10.1016/S0255-0857(21)01804-1

Ishikawa F, Chang H, Curreli M, Liao H, Olson C, Chen P, Zhang R, Roberts R, Sun R, Cote R, Thompson M, Zhou C. Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 2009; 3(5): 1219-24. https://doi.org/10.1021/nn900086c DOI: https://doi.org/10.1021/nn900086c

Downloads

Published

2023-11-25

How to Cite

Corrêa, H. L. . (2023). The Potential Use of Polymeric Nanomaterials Against the Spread of the SARS-Cov-2 and its Variants: A Necessary Briefing. Journal of Research Updates in Polymer Science, 12, 192–202. https://doi.org/10.6000/1929-5995.2023.12.17

Issue

Section

Special Issue: Polymer Science and Metallic Composites at the Forefront: Innovations in Biomedical Polymers and Nanotechnolog