jascm

Journal of Applied Solution Chemistry and Modeling

Solvatochromic Parameters of the Binary Mixtures of Imidazolium Chloride Ionic Liquid Plus Molecular Solvent
Pages 223-230
Jingyi Hu, Wei Zhu, Qiwei Yang, Guoping Qian and Huabin Xing

DOI: http://dx.doi.org/10.6000/1929-5030.2014.03.04.4

Published: 17 December 2014

 


Abstract: Imidazolium-based chloride ionic liquids (ILs) have exhibited remarkable performance in several important applications such as biomass dissolution and extraction, but their large viscosity is a non-negligible problem. Adding molecular co-solvents into chloride ILs is effective in reducing viscosity; nevertheless, understanding of the accompanied change of thermodynamic polarity is quite few. Therefore, in this work we reported three Kamlet-Taft solvatochromic parameters, including dipolarity/polarizability (ð*), hydrogen-bond acidity (α) and hydrogen-bond basicity (β), for the binary mixtures of several imidazolium-based chloride ILs plus either dipolar protic solvents (water and methanol) or dipolar aprotic solvents (dimethyl sulfoxide, N,N-dimethylformamide and acetonitrile). The results demonstrated that those parameters could be altered by the structure of IL and type of co-solvent owing to the solute-solvent and solvent-solvent interactions. The structure of alkyl chain of cation had considerable impact on the ð* variation of IL aqueous solution against IL concentration but hardly affected other mixtures. Moreover, remarkable preferential solvation of probes was observed for β and α in the mixtures of IL and dipolar aprotic co-solvents, whereas the hydrogen-bond interactions between IL and dipolar protic co-solvent enabled the preferential solvation to be alleviated and resulted in more linear variation of β and α against the molar fraction of IL. The results not only contribute to a better understanding of the effect of co-solvent on imidazolium-based chloride ILs, but also are instructive for improving the thermodynamic performance of IL-based applications via providing IL+co-solvent mixtures with desirable physicochemical properties.

Keywords: Polarity, hydrogen bond, basicity, acidity, preferential salvation.
Download Full Article

Journal of Applied Solution Chemistry and Modeling

Nonbranched-Chain Oxidation: Low-Reactive RO4 and HO4 1:2 Adduct Radicals Shortening Kinetic Chains
Pages 231-241
Michael M. Silaev

DOI: http://dx.doi.org/10.6000/1929-5030.2014.03.04.5

Published: 17 December 2014

 


Abstract: New reaction scheme is suggested for the initiated nonbranched-chain addition of free radicals to the multiple bond of the molecular oxygen. The scheme includes the reaction competing with chain propagation reactions through a reactive free radical. The chain evolution stage in this scheme involves a few of free radicals, one of which (tetraoxyl) is relatively low-reactive and inhibits the chain process by shortening of the kinetic chain length. Based on the proposed scheme rate equations (containing one to three parameters to be determined directly) are deduced using quasi-steady-state treatment. The kinetic description with use the obtained rate equations is applied to the γ-induced nonbranched-chain processes of the free-radical oxidation of liquid o-xylene at 373 K and hydrogen dissolved in water containing different amounts of oxygen at 296 K. In these processes the oxygen with the increase of its concentration begins to act as an oxidation autoingibitor (or an antioxidant), and the rate of peroxide formation as a function of the dissolved oxygen concentration has a maximum. The heat effects are compared for the overall reactions of dissociation of simple alkylperoxyl (exothermic) and alkoxyl (endothermic) free radicals in the gas phase. Possible nonchain pathways of the free-radical oxidation of hydrogen and the routes of ozone decay from the energetic standpoint via the reaction with the hydroxyl free radical in the upper atmosphere (including the addition yielding the hydrotetraoxyl free radical, which can be an intermediate in the sequence of conversions of biologically hazardous UV radiation energy) were examined. The energetics of the key radical-molecule reactions is considered.

Keywords: Competition, low-reactive radical, autoinhibitor, thermochemical data, energy, hydrogen.
Download Full Article

Journal of Applied Solution Chemistry and Modeling

Bio-Oil Production from Cirsium yildizianum through Pyrolysis in a Fixed-Bed Reactor
Pages 135-151
Tevfik Aysu and Aydin Şükrü Bengü

DOI: http://dx.doi.org/10.6000/1929-5030.2014.03.03.1

Published: 18 September 2014

 


Abstract: Pyrolysis of Cirsium yildizianum samples were carried out in a fixed-bed tubular reactor with (tincal, colemanite and ulexite) and without catalyst catalyst at three different temperatures (350, 450, 550 oC) with a constant heating rate of 50 oC/min. The yields of bio-char, bio-oil and gas produced along with the compositions of the resulting bio-oils were determined by elemental, Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography/ mass spectrometry (GC–MS). The effects of pyrolysis parameters including temperature and catalyst on product yields were investigated. The results indicate that both temperature and catalyst had signficant effect on conversion of Cirsium yildizianum into solid, liquid and gas products. The highest liquid (bio-oil) yield of 40.62% including aqueous phase was obtained in the presence of colemanite (10%) as catalyst at 550 oC. 79 different compounds were identified by GC-MS in bio-oils obtained at 550 oC.

Keywords: Biomass, Pyrolysis, Bio-oil, Catalyst, Cirsium yildizianum.
Download Full Article

Journal of Applied Solution Chemistry and Modeling

Excess Volume of Binary Mixtures of Water (Methanol or Ethanol) with an Ionic Liquid [EEIM][DEP] or [BEIM][DEP] at 1 atm and (293.15 to 333.15) K
Pages 152-158

Hong-Yan Song, Yin-Hui Gong, Xue-Mei Jiang and Chun-Xi Li

 

DOI: http://dx.doi.org/10.6000/1929-5030.2014.03.03.2

Published: 18 September 2014

 


Abstract: Densities were measured for the binary mixtures of water (methanol or ethanol) and an ionic liquid (IL) 1,3-diethylimidazolium diethylphosphate [EEIM][DEP] or 1-n-butyl-3-ethylimidazolium diethylphosphate [BEIM][DEP] at 1 atm and (293.15 to 333.15) K using a vibrating-tube densimeter. The molecular volume, standard entropy, and lattice energy of the two ILs were estimated with the Glasser theory. The excess volumes are negative for all binary mixtures studied in the whole composition range, and reach to the maximum at the mole fraction of IL being around 0.3. Besides, they decrease with increasing temperature for the aqueous solution of ILs, whilst a reverse trend is found for the IL solutions of methanol or ethanol at any concentration. The excess molar volumes were correlated successfully by a five-parameter polynomial equation as a function of temperature and mole fraction of IL with average absolute relative deviation (ARD) of density within 0.02%.

Keywords: Density, excess volume, ionic liquid, water, methanol, ethanol.
Download Full Article